- 相关推荐
一次函数教学反思(通用10篇)
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。下面是小编为大家整理了一次函数教学反思,欢迎阅读参考,希望对你有所帮助!
一次函数教学反思 1
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与 k 、 b 符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的.目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究 k 、 b 符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中 k 、 b 符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照 k 、 b 的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确 k 的符号决定直线的什么位置, b 的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中 k 、 b 的符号的练习,收到了一定的效果。
本节课我在练习的处理上,显得比较薄弱。一是时间安排上有些前松后紧,二是题量、题型不是很全面。感觉练习不到位,学生知识落实情况不是很了解。这一环节,今后还应加强。
一次函数教学反思 2
教学中,我提倡学生做一道题收获一道题:不仅要会将给定的题目分析得解,还要学会总结反思解题规律、方法思路、技巧、数学思想方法等,最重要的是要充分发挥成题的作用,学会对一道成题从不同角度进行变式,在变化中分析、思考,从而达到将知识学活、学会学习的目的。这里以“一次函数基本知识”的复习课为例,谈谈如何用一道题目的变式囊括所有知识点的复习.
例题:已知函数y=(3-k)x-2k+18是一次函数,求k的取值范围.
设计意图:考查一次函数的定义:y=kx+b中k≠0.
一变:k为何值时,一次函数y=(3-k)x-2k+18的图象经过原点;
设计意图:考查点与图象和点的坐标与函数解析式之间的对应关系:
图象过原点等价于x=0,y=0满足y=(3-k)x-2k+18.
二变:k为何值时,一次函数y=(3-k)x-2k+18的图象与y轴的交点在x轴的上方.
设计意图:考查一次函数的图象与x轴、y轴的交点问题,并能将文字语言翻译成数学语言:与y轴的交点在x轴的上方表示交点的`纵坐标,即-2k+18(一般式中的b)大于0.
三变:k为何值时,一次函数y=(3-k)x-2k+18y随x的增大而减小(或:(a,b)(m,n)均在一次函数y=(3-k)x-2k+18图象上,且an,求k的取值范围).
设计意图:考查一次函数的性质.
四变:k为何值时,一次函数y=(3-k)x-2k+18图象经过一、二、四象限?
设计意图:学习一次函数的最重要方法是数形结合.结合图象,将问题转化为解关于k的不等式组.
五变:k为何值时,一次函数y=(3-k)x-2k+18图象平行于直线y=-x;
设计意图:考查决定两条直线位置关系的因素,这里只涉及简单的情形:两条直线平行等价于3-k=-1(即一般式中的k相等).
六变:直线y1=(3-k)x-2k+18与直线y2=2x+12交于点P(-1,a).
(1)求k的值;
(2)x为何值时,y1〉y2;
(3)求直线y=(3-k)x-2k+18、直线y=2x+12与x轴围成的三角形的面积.
设计意图:(1)交点的意义:点P(-1,a)同时满足y=(3-k)x-2k+18与直线=2x+12,从而求得a,k;(2)解决第二问时有多种方法:解不等式,数形结合;(3)第三问需要借助图象明确所求的图形,弄清点的坐标与线段长的关系(这是学生的易错点,补充强化练习:如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,求k的值).
“一题多变”教学收获反思:
1、在本节课中,通过对一次函数y=(3-k)x-2k+18的多角度变式,将转化的思想、数形结合的思想含儿不露地加以应用,学生的思维、能力均得以发展。
一次函数教学反思 3
在学习了正比例函数的概念之后进行一次函数的概念学习,学生还是比较有信心学好的。
课例根据教材的安排,通过设计经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;通过思考题来不断细化教材,达到层层铺垫、分层递进的目的。
1.理解一次函数和正比例函数的概念;通过类比的方法学习一次函数,体会数学研究方法多样性。
2.根据实际问题列出简单的一次函数的表达式.找出问题中的变量并用字母表示是探求函数关系的第一步。
3.本节课重点讲授了运用函数的关系式来表达实际问题,通过引导分析,感觉学生收获比较大。
另外,写出函数的关系式,学生比较困难,本节课也存在可以不断提高完善的.地方。
此外在讲一次函数图象性质的时候,补充内容不宜过多,许多中考题中对一次函数部分的要求是站在整个三年数学学习的基础上,仅仅在第一次学习一次函数就提出这些要求对学生来讲比较困难。确定一次函数表达式的教学中,我们也发现这类问题,配套的辅导资料中,相当多的题目需要借助二元一次方程组,而学生目前并没有系统学习解二元一次方程组,所以,我们需要在教学过程中把握一个度。拿今天上的确定一次函数表达式的教学讲,我在处理教材的时候,重新编写了例题。首先给出一组已知一个点的正比例函数的图象,让学生来求它们的表达式,在此基础上,再给出一组已知y轴交点坐标和另一点坐标的一次函数图象,最后是给出一组已知参数k的一次函数图象。在设计本节课例题的时候,我参考了部分省市的中考题,简化其中对二元一次方程组部分的要求,让学生感受确定一次函数图象需要两个条件,并进一步明确解题的规范,通过规范养成,培养学生有条理地思维一次函数表达式的确定问题。
一次函数的教学在本学期中是一个重点内容,由于后期围绕一次函数的题型非常多,要求也更高,对学生在此阶段的基础提出了很高的要求,如果不能在这个阶段让学生充分理解一次函数概念及图象性质,对中考复习来说是一场灾难,到那时,就会发现,原本以为很简单的问题,学生硬是搞不明白,所以,本章剩下的两节内容仍然需要研究教材,发挥八年级组内各位老师的智慧,让学生收获更多,理解更深,打下良好的基础。
一次函数教学反思 4
《一次函数》内容安排基本合理,通过生活中两个实例,学生在探究性的活动后,引入一次函数的概念,接着通过练习,辨别一次函数,再通过练习写解析式,最后是关于一个结合生活实例的例题和相关的两个练习,总结结束。
由于这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用让学生亲自动手、动脑画图的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。
值得反思的地方有:
1、最后的一个练习没有时间,总结的时间没有了。
2、要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言。
3、怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!由学生掌控,浪费时间。在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的.方向!
4、在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!
5、真正的要形成自己的教学风格,熟悉教材,熟悉学生。
6、课的内容容量较大,对于有些知识点,如“随着X值的增大,Y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解并消化该知识点,但由于时间紧,学生的这一活动开展的不充分,课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。
一次函数教学反思 5
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生得出了图象的性质,借助直观图象的性质而得到一次函数的性质。真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。
最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的`人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。
一次函数教学反思 6
初三总复习已经全面展开,随着时间的推移,已经复习到了一次函数。
在这一节课中,先复习了函数的定义,函数的三中表示方法:表格法,表达式法和图象法。三种方法学生都表示能理解其意思,但难就难在如何确定一次函数的表达式。学生已经知道,一次函数的图象是一条直线,通过图象来确定函数的`表达式。一次函数的一般形式为y=kx+b(k,b为常数,k≠0)。要想确定一次函数表达式,只要确定k和b,的值就行了。函数y=kx+b与x轴的交点为(,0),与y轴的交点为(0,b)。这样就可以明确的告诉学生,与y轴的交点的纵坐标就是b的值,就可以把确定一次函数表达式的难度大大降低,然后再确定k的值。与x轴交点的横坐标就是的值,这样k的值就能确定,一次函数的表达式也就能确定了。在这节课中,我明显的感觉到了学生理解一次函数的提升。也感觉到了学生知识面扩大,从心底里油然而生的高兴。也明白了有些知识学生一开始理解不了,时间长了,也就慢慢理解了。也是我明白了,数学学习、数学思想的形成是一个漫长的过程,一朝一夕是不可能学会的,所以要做好长期慢慢的培养学生思想准备。
一次函数教学反思 7
一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握一次函数的概念、图象性质以及实际应用。巩固练习中,从基本练习、例题精讲一直到巩固练习,设计均有层次,有坡度。
这是一节章节复习课,虽然课程容量大,内容又较抽象,但采用了先进的多媒体辅助教学,使本课教学的知识概念变得具体、生动、可信。
本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力.
本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的`有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力.
不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。
一次函数教学反思 8
今天第二节数学课,用课件教学。内容是《一次函数》,内容安排基本合理,通过生活中两个实例,学生活动后,引入一次函数的概念,主要是一次函数的基本形式,及其特例正比例函数。接着练习,主要是辨别一次函数、在什么条件下解析式是一次函数。再通过练习写解析式,最后关于一个结合生活实例的例题和相关的两个练习,总结结束。
反思:
1、最后的一个练习没有时间,总结的时间没有了。建议只用一个练习。
2、要注意语速和声音音量的.控制,不是声音越大越好,注意上课的语言。
3、怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!要学生扮演,浪费时间。在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向!
4、在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!靠练习提高成绩不是长久之际。
5、真正的要形成自己的教学风格,熟悉教材,熟悉学生。
一次函数教学反思 9
一次函数的图象和性质在实际生活中的应用十分广泛,有行程、温度、利润、电话费等问题,特别是与经济问题相关的问题是近几年各省市中考数学试题中的热点题型。能用一次决实际问题,对发展学生的数学应用能力和建模能力起着非常重要的作用。上完这节课后,我希望学生对这节课的内容能更加熟悉,能更加重视这部分内容;在利用图表信息得到与一次函数表达式有关数据的过程中,体会“数形结合”思想在数学应用中的重要地位。
上完这节课后,受到其他老师和区教研员肯定的是:
1、教态比较自然;课堂给予学生学习时间;学生学习积极性较强,不同层次的学生都在学习。
2、所选例题针对性较强,较有层次。
3、能够把学生出现的问题预测到了。
4、比较注重对学生做题的常规要求,特别是要求学生作图用尺子和圆规。
5、比较注重学生的评价,不管是老师对学生,还是学生对学生的评价。
但也有很多不足的地方:
1、时间安排不够合理,在复习回顾所花的时间过多,这主要是跟我的习惯有关,对于学生讲过的内容,总是再重复一次,致使浪费了不必要的时间;以后上课要多在这些细节的地方注意,避免不必要的'浪费时间;自己控制课堂时间的能力还有待加强。
2、学生紧张过度,自己调节能力功底不够,不能及时调节学生情绪,而给学生相互讨论的时间不够充裕,学生与学生,学生与老师之间交流互动的机会不够,致使课堂气氛沉闷。自己应该学会怎么去调控学生的情绪,这也是我今后应该重点学习的。
3、老师包办太多,对学生过于不放心。如在讲解如何求蜡烛燃烧剩下的高度h与燃烧时间t的函数关系式,学生回答:设y=kx+b,那时我就很着急,问:是y与x吗?这时学生就急急忙忙改为h=kt+b。我要的答案有了,但是却把学生的思路打乱了,用我的思路代替了学生的思路。所以用区教研员林日福老师的话说:不要不放心学生,要给学生犯错误的机会,只有他们自己犯的错,对他们才是最有价值的。
除了以上种种,我认为我需要改进的方面还有很多,特别在一些细节方面,如板书的规范,语言的规范等。一个老师所讲、所写不仅仅是给一个人听、一个人看,学生的一切言行都是以老师的言行做为楷模,所以做为老师更要做好示范。
课堂教学是一个动态的过程,学生的思维又常常受到课堂气氛、突发事件的影响,所学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。
本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。
一次函数教学反思 10
本节课是在七年级下册“变量之间的关系”一章的基础上,通过对变量关系的考察,使学生明确“给定其中某一个变量的值,相应的就确定了另一个变量的值”这一共性,从而归纳出函数的概念。本节最重要的任务是完成函数概念的建构,同时让学生感受出函数表示方式的多样性,从而使学生对函数有一个更为准确、全面的认识。
1、在内容的处理上,函数的概念是相当抽象的,学生认识起来有一定的困难,为此从具有函数关系生动有趣的生活实例开始,进行分析说明以激发学生的好奇心求知欲。通过摩天轮、圆柱形物体的堆放数目和层数等一些生活实例,从图形和表格两个方面让学生体会思考其中的蕴含的变量关系,有利于学生对函数的形成全面的认识,尤其是摄氏温度T(k)与热力学温度T(k)之间数量变化,让学生明确自变量的取值范围不仅可以是正数,也可以是负数,从而使学生对自变量的取值范围有更全面的认识。通过概念的获得过程,让学生感悟抽象的数学思想,积累抽象概括的活动经验。
2、课堂教学中,激发学生的学习积极性,帮助他们在自主探究、合作交流的过程中,真正理解和掌握基本的数学知识和技能获得广泛的`活动经验,为学生提供充分的探索空间,结合引导学生独立思考,创建民主、宽松、和谐的课堂氛围。
3、注重学法指导,通过一例的探究活动完成学习过程,让学生经历观察、探索、分析、归纳的一个过程。自主完成本节课的学习,整个教学过程中,不论是情景引入,还是新知识的探究及拓广,始终体现学生是数学学习的主人,本课知识学习过程中都是以问题形式呈现给学生,难易有别、层次分明。不但激发了兴趣,也为学生主动学习构建新知识提供了保证。
当然,本节课也发现了不少的问题:
1、当遇到具体的问题时,函数概念模糊,说明少时学生尚未抓住函数的本质属性。
2、课前安排的《绩优学案》自主探究环节完成情况不够好,部分同学抄袭他人学案。合作交流环节,学生放不开,加上知识跨度大,占用课堂时间多,致使课堂练习任务未完成。
3、小组合作交流成效不大,还只是停留在对照答案的正确与否,不能对错对进行辨析,不能真正的体现知识从建立到内化,继而转化为解决问题的能力的过程。
【一次函数教学反思】相关文章:
一次函数练习题精选03-09
初中一次函数教案03-02
画家和牧童教学反思教学反思07-29
八年级《一次函数》教学设计(精选7篇)11-29
初中教学教学反思02-02
小学教学教学反思02-03
教学反思到底反思什么?07-26
教学反思要反思什么07-28
教学反思到底反思什么08-12