距2015考研时间不多了,很多考生认为最后阶段短期内提升数学已经不太可能,因为这是一门非常注重平时积累的学科。提醒大家:数学考研日常积累和实力固然重要,但如果掌握了高超的考研技巧,将有助于考生节省时间,临场发挥出更好的水平,突破自我,取得高分。
一、关于做题——坚持做题不放过错题
1.坚持做一定数量的习题,保持题感
很多同学认为到了复习的后期,数学只需要看看以前的错题和不会的题目,扫除盲点即可,这样的想法是大错特错的。我们必须要保证每天做一定数量的习题,保持这样的做题状态一直到考试的前一天。建议同学们这几天再最后做一套数学全真模拟,剩下的两天仔细看参考答案解析,并且还要坚持找一些难度不突破的题目来做。这样就可以保证每天都做题目。其实数学是隔一段时间不接触就会很快的遗忘的,三两天不做数学题再做的时候就感觉很生疏,磕磕碰碰,思路不顺畅。这样的状态非常不利于在真实考场上的发挥。考研数学虽然题目不会很难,比较基础,但是有一个特点就是计算量非常大,如果做题的时候不顺手的话,一般很难全部完成所有的考题。坚持每天做数学题,这一点非常非常重要,希望同学们能够重视。
2.以前总结的错题和不会的题目要翻看
前期我们强调过一定要在平时做题的过程中注意把错题和不会的题做好标记,这在复习的冲刺阶段就派上了大用场。因为到后期的时候,时间很紧张,有了错题集,就知道自己哪儿会哪儿不会,知道有限精力应该放在哪儿,后期时间很紧张,不可能再每个题目再过一遍,也没有必要。考研后期有限的精力一定要放在刀刃上,查漏补缺,不能再像刚开始的时候那样面面俱到。对于以前总结的错题和不会的题目,建议最好不要看解答,自己再做一遍。考研数学虽然本质上就是做题再做题,但是在后期的时候没有必要再去搞题海战术,没有必要去找市场上充斥的大量的模拟题,不是什么题目都有质量值得你花宝贵的时间去做。后期把主要精力花在曾经的错题和不会的题目上,扫除盲点,这样更有针对性。
二、关于题型:掌握技巧研究出题人意图
选择题的难度一般适中,基本保持在中等难度,没有特别难的题目,也没有一眼就能看出答案的题目。选择题主要考查考生对数学概念、数学性质的理解,要求考生能进行简单的推理、判定、计算和比较。这一部分的32分需要同学们在读书的时候深入思考,并要不完全依赖臆想,而要思考与动手相结合才能稳拿。
填空题题目难度与选择题不相上下,即难度适中。方法只有一个:认真审题,高效率计算。填空题总共只有6个,高等数学(4个)、线性代数(1个)、概率论与数理统计 (1个)各有分布,主要考查的是数学基本概念、基本原理、基本方法及数学的重要性质。这一部分24分的获取需要基础复习阶段就融会贯通的知识作保障。
解答题占总分的百分之六十多,其中有计算题、证明题及其他解答题,一般都会有多种解题方法和证明思路,有些甚至有初等解法,但考试解答时尽量用与《考试大纲》规定的考试内容和考试目标相一致的解法和证明方法,步骤表述清楚,避免因表达不清而失分。
计算题的正确解答要靠平时对各种计算方法,以及对综合题如何选择有效的解题方法的熟练掌握。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的证明。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,需要考生在强化阶段加强提高这方面的能力。
三、关于知识点:提纲挈领吃透基本理论
在最后的冲刺阶段,提纲挈领地把基本理论吃透,首先是概念产生的实际背景是什么,界定此概念所运用到的数学思想和方法是什么。接下来要弄懂这个概念的定义式,包括它的数学含义、几何意义和物理意义,以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能地从这几个方面来理解把握。理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。数学考试实际上就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。所谓万变不离其宗。
小编为同学们总结了近年来考研数学常考十大知识点:(1)运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。(2)运用导数求最值、极值或证明不等式。(3)微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。(4)重积分的计算,包括二重积分和三重积分的计算及其应用。(5)曲线积分和曲面积分的计算。(6)幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。(7)常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。(8)解线性方程组,求线性方程组的待定常数等。(9)矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。(10)概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。