2016考研数学:“微分方程”大纲考点

发布时间:2017-08-05 编辑:bin

  在研究生入学考试中,高等数学是数一、数二、数三考试的公共内容。数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16 分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题 (每题5分,共20分)、7个解答题(总分72分)。由高数所占比例易知,高数是考研数学的重头戏,因此一直流传着“得高数者得数学。”高等数学包含函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷级数等七个模块,老师继续梳理分析最后一个模块微分方程,希望对学员有所帮助。

  1、考试内容

  (1)常微分方程的基本概念;(2)变量可分离的微分方程;(3)齐次微分方程;(4)一阶线性微分方程;(5)伯努利(Bernoulli) 方程和全微分方程;(6)可用简单的变量代换求解的某些微分方程;(7)可降阶的高阶微分方程;(8)线性微分方程解的性质及解的结构定理;(9)二阶常 系数齐次线性微分方程;(10)高于二阶的某些常系数齐次线性微分方程;(11)简单的二阶常系数非齐次线性微分方程;(12)欧拉(Euler)方程; (13)微分方程的简单应用(其中5、7、12只要求数一考生掌握,数二、数三考生不要求掌握)。

  2、考试要求

  (1)了解微分方程及其阶、解、通解、初始条件和特解等概念;(2)掌握变量可分离的微分方程及一阶线性微分方程的解法;(3)会解齐次微分方 程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;(4)会用降阶法解下列形式的微分方程;(5)理解线性微分方程解的性质及解的结构; (6)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;(7)会解自由项为多项式、指数函数、正弦函数、余弦函数以 及它们的和与积的二阶常系数非齐次线性微分方程;(8)会解欧拉方程;(9)会用微分方程解决一些简单的应用问题。

  3、常考题型

  (1)变量可分离、齐次微分方程、一阶线性齐次与非齐次微分方程的求解;(2)可降阶的高阶微分方程的求解(数一、数二要求掌握,数三不要求掌 握);(3)全微分方程和欧拉方程的求解(数一要求掌握,数二、数三不要求掌握);(4)线性微分方程解得结构;(5)微分方程相关的综合问题。

  以上是老师针对微分方程这一模块,围绕大纲考点、常考题型进行的梳理分析,希望考生对这部分内容要熟练掌握。

最新推荐
热门推荐