一套质量较高的复习资料往往能大大提高复习效率,使得我们的复习事半功倍,而反之则不但浪费时间,更有可能带偏考生的复习方向,将考生的复习引上“歧途”。现在市面上考研数学复习资料种类繁多、稂莠不齐,考生在选择时往往会无所适从。针对这一现状,跨考教育数学教研室李老师对考生全年复习过程中的用书做一个简单的介绍,考研数学的复习用书可以分为四大类:
(1)考试大纲和考试分析
国家教委制定的大纲严格划定了各类专业考生应考的范围和难度要求,这应该是一切考生最权威最有用的参考资料之一,也是考生制定计划的依据。考试分析是配合大纲编写的,一方面是对大纲知识点进行进一步地分析,另一方面就是对真题和考生试卷情况的分析,便于考生更准确给自己进行定位,是一种历史性的参考资料。
(2)历年真题
这些试题对于了解考研题型,体会出题思路,把握命题重点,强化答题技巧和训练答题规范有重大意义。现在的辅导书一般都会在书中穿插着或者在后面以附录的形式给出部分真题,不过整套包含详细答案和评分细则的真题仍然有着不可替代的作用,因为考研真题不但要从每道题上符合严格的出题规范,还要从整体上符合预期的难度和区分度,因此整套的真题更能反映命题特点。另外,值得注意的一点是,现在的辅导资料往往都没有答题规范的讲解,规范的答题还可以让思路更清楚,从答案来看,每道题要求的关键步骤都不多,最后的考试时间紧任务重,明智的做法就是:没用的步骤不要写,写就要写到点子上。
(3)教材类
“高等数学”同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》清华版:讲解翔实,细致深入,适合时间充裕的同学(推荐)。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的同学。
《概率论与数理统计初步》浙大版:课后习题基本的题型都有覆盖。其他版本也可以,内容的变化相差不是很多。
(4)辅导材料
看教材的好处是全面细致,但往往耗时太长,而且重点不突出,对于考研的同学来说常常感觉跌到云里雾里。辅导材料我们在后面的复习中每一个阶段都要用到,这里基本按照时间进行排序。
首先是综合类的辅导全书,然后是针对性的习题集,最后阶段还可以用到最新的模拟题或预测题。这类辅导资料种类很多,是市面上考研数学复习资料的主体,我们在这里不推荐具体的书名,考生可以根据自己的特点选择合适的资料。
延伸阅读:高等数学的复习计划
第一章 函数与极限(10天)
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
第二章:导数与微分(7天)
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
第三章:微分中值定理与导数的应用(8天)
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
第四章:不定积分(7天)
积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
第五章: 定积分(8天)
定积分是微积分七大积分的基础,要理解微元法,理解以“以常代变”的这种思想。定积分的计算公式“牛顿-莱布尼兹”是我们微积分的核心,要会证明。
第六章:定积分的应用(5天),
定积分的几何应用,是所有同学都需掌握的;物理应用数三的同学不需掌握。
第七章:空间解析几何(3天)
本章主要理解向量之间的关系,会写平面、直线、二次曲面的方程,为后面重积分做准备。
第八章:多元函数微分法及其应用 ( 7天)
在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,掌握计算不同函数的各种方法及应用中的会求条件或无条件极值。
第九章:重积分(7天)
在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念,本章主要介绍重积分(包括曲线曲面积分)的概念、计算方法以及它们的一些应用,重点是会计算。
第十一章:无穷级数(7天)
这一部分和之前的知识联系不那么紧密,是从思维方式上的一个改变。本章学习的时候一定要分类总结,对于数项级数,分清不同的级数适用的判定方法;对于函数项级数,会求和函数、收敛域。
第十二章 常微分方程 (9天)
常微分方程的研究对象就是常微分方程解的性质与求法,本章主要有两个问题,一是根据实际问题和所给条件建立含有自变量、未知函数及未知函数的导数的方程及相应的初始条件;二是求解方程,包括方程的通解和满足初始条件的特解。学习的切入点是,看到方程分辨出方程的类型,其次再谈它的解法,因为不同的方程解法不同。