2017考研数学:谈谈三大重要考点的破解之道

发布时间:2017-11-02 编辑:少冰

  考研数学难度大,考点也很多,考生要注意对重难点考点的理解和掌握。考研数学有哪考点呢?那么考生们应该如何复习这些考点呢?下面大家就随小编一起去看看吧!

  一、级数

  1.注意考纲要求

  2017考研数学大纲没有变化,级数只对数学一和数学三的考生有要求。但是在具体的要求层次上还是有很大差别的。比如说级数收敛,发散及收敛级数和的概念上数学一要求的是理解,而数学三只是了解。所以,从真题的角度,数学一就可以在概念上出大题。同时,数学一要求掌握交错级数的莱布尼茨判别法,而数学三只是了解。所以,数学一考查绝对收敛和条件收敛的情况较多。当然对幂级数展开和求和,数学一和数学三的要求是一样的。考生都要求会用逐项求导和逐项求和的方法来进行展开和求和。

  2.题型分析

  通过对往年真题的分析,我们发现有关级数的问题是每年的必考题。提醒比较灵活,选择题,填空题和解答题都有可能出现。

  3.复习方法

  首先,同学们要清楚级数这章的知识体系,要把知识结构搞清楚,区分绝对收敛和条件收敛以及常数项级数收敛性质。然后,同学们应该记住常见的收敛级数,比如p级数及几何级数,清楚常见函数的麦克劳林公式。最后,同学们应该多做真题,进一步熟悉知识点,在做的过程中要学会总结,形成自己的知识体系和方法。

  总之,同学们根据考纲要明确级数的真正重难点,即上面说的基本体系。同学们不要一味的追求很偏的怪题,只要能够掌握重点方法,考研级数的重难点也就掌握了。祝同学们马到成功。

  二、多元函数积分

  1.题型分析

  通过对往年真题的分析,我们发现有关多元函数积分计算是每年的必考题。题型一般都是以大题为主。是学生失分的重要领域。希望引起学生注意。

  2.复习方法

  首先,同学们还要清楚多元函数积分学所包含的内容以及三重积分,曲线,曲面积分所表示的物理意义。然后,同学们应该透过历年真题来把握出题的重点。总体来说,格林公式,高斯公式,积分与路径无关是考查的重点。因为格林公式与二重积分联系,高斯公式与三重积分联系,它们考查的都是复合的知识点;而积分与路径无关往往与微分方程联系。最后,同学们也要注意一些冷的考法。即单纯考三重积分或者考查斯托克斯公式。单独考的时候,题目一般比较难,所以希望同学们可以找相应的题目练习下。

  总之,通过2016年考研数学真题的解析,希望大家在备考2017年的时候经过这三个步骤能够学习好多元函数积分学,为以后的高等数学的复习打好基础!

  三、中值定理

  1.题型分析

  通过对往年真题的分析,我们发现有关微分中值定理的考查一般都是以解答题的形式出现,并且是每年的一个必考点。

  2.复习方法

  同学们通过2017年的基础和强化复习,对微分中值定理的内容及证明是有所了解的。同样针对2016年考试情况,我认为同学们的主要问题在于微分中值定理相关知识点的联系上。很多同学往往知道微分中值定理有哪些内容,但是就是做题的时候不知道用哪个方法。所以在三阶,很有必要把知识点的联系跟同学们再次说明下,让同学们在做证明题的时候思路更加清晰。那么根据对往年证明题的分析,我发现同学们要完成证明题是需要明晰知识体系的。首先,同学们要掌握极限的保号性,介值定理及费马引理;然后,掌握核心的三大中值定理以及数学一要重点掌握的泰勒定理;最后,掌握积分中值定理。同学们在清楚了微分中值定理所需要掌握的知识体系后,再通过做题总结,我想证明题就不难了。我再次提醒,微分中值定理的证明题一定要自己总结,自己活用体系,这样的话上考场才能达到游刃有余的目的,才能正真的做对题。

最新推荐
热门推荐