1 )算术:① 数的概念;② 数的性质;③ 最大公约数和最小公倍数;④ 数整除的概念;⑤ 同余的概念和性质;⑥ 质数和和合数的概念;⑦ 奇数和偶数的概念;⑧ 分数和小数的概念;⑨ 集合和统计的问题;⑩ 排列组合问题;概率问题;
2)代数:① 幂的运算;② 数列;③ 实数概念;④ 因式分解;⑤ 方程概念;⑥ 不等式概念;⑦ 函数概念;
3)几何:① 平面几何:a. 三角形;b. 圆;c. 正方形;d. 长方形;e. 平行四边形;f. 菱形;g. 梯形;h. 平行的概念;i. 圆和多边形;j. 多边形;② 立体几何a. 正方形;b. 圆锥;c. 圆柱;d. 长方形;e. 球;③ 平面直角坐标系a. 坐标平面和四个象限;b. 坐标平面点的对称性;c. 斜率;d. 截距e. 两点之间距离;f. 直线方程;g. 抛物线;
五个方法助你高分
一、换元。换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.
二、数形结合。GMAT数学要讲究数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.
三、转化与化归。所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.
转化与化归的思想方法是数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析 法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.
四、函数与方程。函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思 想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.
五、分类讨论。所谓GMAT考试分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是“化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”掌握这五个方法才能更接近GMAT数学满分。