应届毕业生网>主页 > 手抄报 > 数学手抄报 > 小学生三年级数学手抄报

小学生三年级数学手抄报

发布时间:2017-11-27来源:手抄报资料网

  数学小故事

  一、数学家鲁道夫的小故事

  16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。

  二、数学家陈景润的小故事

  1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 •威尔(AWeil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。

  三、数学家雅谷伯努利的小故事

  瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。

  四、数学家阿基米德的小故事

  一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。

  古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。

  16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。

  小资料:

  【1】平行四边形的面积=底×高

  梯形的面积=(上底+下底)×高÷2

  直径=2 r

  圆的周长=πd= 2πr

  圆的面积= πr^2

  长方体的表面积=

  (长×宽+长×高+宽×高)×2

  长方体的体积 =长×宽×高

  正方体的表面积=棱长×棱长×6

  正方体的体积=棱长×棱长×棱长

  圆柱的侧面积=底面圆的周长×高

  圆柱的表面积=上下底面面积+侧面积

  圆柱的体积=底面积×高

  圆锥的体积=底面积×高÷3

  柱体体积=底面积×高

  平面图形

  名称 符号 周长C和面积S

  正方形 a—边长 C=4a S=a2

  长方形 a和b-边长 C=2(a+b) S=ab

  【2】1 过两点有且只有一条直线

  2 两点之间线段最短

  3 同角或等角的补角相等

  4 同角或等角的余角相等

  5 过一点有且只有一条直线和已知直线垂直

  6 直线外一点与直线上各点连接的所有线段中,垂线段最短

  7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

  8 如果两条直线都和第三条直线平行,这两条直线也互相平行

  9 同位角相等,两直线平行

  10 内错角相等,两直线平行

  11 同旁内角互补,两直线平行

  12两直线平行,同位角相等

  13 两直线平行,内错角相等

  14 两直线平行,同旁内角互补

  15 定理 三角形两边的和大于第三边

  16 推论 三角形两边的差小于第三边

  17 三角形内角和定理 三角形三个内角的和等于180°

  18 推论1 直角三角形的两个锐角互余

  19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

  20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

  21 全等三角形的对应边、对应角相等

  22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

  23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

  24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

  25 边边边公理(sss) 有三边对应相等的两个三角形全等

  26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

  27 定理1 在角的平分线上的点到这个角的两边的距离相等

  28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

栏目推荐
热点排行
推荐阅读