数学手抄报实用版面设计图

发布时间:2017-11-23 编辑:qianlong

  数学奇才——伽罗华

  1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

  青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

  数学之父——塞乐斯

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:

  1.圆被任一直径二等分。

  2.等腰三角形的两底角相等。

  3.两条直线相交,对顶角相等。

  4.半圆的内接三角形,一定是直角三角形。

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

  塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。

数学手抄报实用版面设计图

  华裔数学家陶哲轩

  陶哲轩,1975年7月15日,陶哲轩出生在澳大利亚阿得雷德,是家中的长子。现任教于美国加州大学洛杉矶分校(UCLA)数学系的华裔数学家,澳洲惟一荣获数学最高荣誉“菲尔茨奖”的澳籍华人数学教授,继1982年的丘成桐之后获此殊荣的第二位华人。其于1996年获普林斯顿大学博士学位后任教于UCLA,24岁时便被UCLA聘为正教授。

  陶哲轩两岁的时候,父母就发现这个孩子对数字非常着迷,还试图教别的孩子用数字积木进行计算。

  3岁半时,早慧的陶哲轩被父母送进一所私立小学。然而,研究天才教育的新南威尔士大学教授米那卡·格罗斯(MiracaGross) 在陶哲轩11岁时出版的一篇论文中写道,陶哲轩的智力明显超过班上其他孩子,但他不知道怎么与那些比自己大两岁的孩子相处,而学校的老师面对这种状况也束手无策。

  几个星期以后,陶哲轩退学了。陶象国夫妇从这次失败经历中吸取的一个宝贵教训是:培养孩子一定要和孩子的天分同步,太快太慢都不是好事。陶象国对本报记者说:“我们决定还是让他去上幼儿园。”幼儿园里有陶哲轩的同龄人。

  上幼儿园的一年半里,陶哲轩还在母亲梁兰指导下完成了几乎全部小学数学课程。母亲更多是对他进行启发,而不是进行填鸭式的教育。而陶哲轩更喜欢的也似乎是自学,他贪婪地阅读了许多数学书。

  陶象国夫妇还开始阅读天才教育的书籍,并且加入了南澳大利亚天才儿童协会。陶哲轩也因此结识了其他的天才儿童。

  5岁生日过后,陶哲轩再次迈进了小学的大门。这一次,父母考察当地很多学校后,最终选择了离家2英里外的一所公立学校。这所小学的校长答应他们,为陶哲轩提供灵活的教育方案。刚进校时,陶哲轩和二年级孩子一起学习大多数课程,数学课则与5年级孩子一起上。

  7岁时,陶哲轩开始自学微积分。“这不是我们逼他看的,是他自己感兴趣。”陶象国说。而小学校长也意识到小学数学课程已经无法满足陶哲轩的需要,在与陶象国夫妇讨论之后,他成功地说服附近一所中学的校长,让陶哲轩每天去中学听一两堂数学课。

  陶哲轩8岁半升入了中学。9岁半时,他有三分之一时间在离家不远的弗林德斯大学学习数学和物理。8岁零10个月时,陶哲轩曾参加一项数学才能测试,得了760分的高分。在美国,十七八岁的学生中只有1%能够达到750分,而8 岁的孩子里面还没有人超过700分。

  这期间,美国约翰·霍普金斯大学的一位教授将陶象国夫妇和陶哲轩邀请到美国,游历了三个星期。夫妇俩曾请教费弗曼和其他数学家,陶哲轩是否真的有天才。“还好我们做了肯定答复,否则今天我们会觉得自己是傻瓜。”费弗曼回忆说。

  一年后,陶象国夫妇面临一个重大抉择:陶哲轩什么时候升入大学?格罗斯教授在她的论文中写道,陶哲轩的智商介于220至230之间,如此高的智商百万人中才会有一个,他也完全有能力在12岁生日前读完大学课程,打破当时最年轻大学毕业生的记录。

  但他们觉得没有必要仅仅为了一个所谓的记录就让孩子提前升入大学,希望他在科学、哲学、艺术等各个方面打下更坚实的基础。

  此外,陶象国认为,让陶哲轩在中学阶段多呆3年,同时先进修一部分大学课程,等到升入大学以后,他才可以有更多的时间去做一些自己感兴趣的事情,去创造性地思考问题。

  后来,陶哲轩20岁获得普林斯顿大学博士学位,24岁被洛杉矶加州大学聘为正教授。

  据《探索》报道,33岁的陶哲轩是美国研究成果最多、最受尊敬的数学家之一。据测试,陶哲轩的智商介于220至230之间,如此高的智商百万人中才会有一个。他在小小年纪时便展现出数学天分。8岁升入中学,曾参加SAT(美国高考)数学部分的测试,得了760分的高分(800分为满分)。

数学手抄报实用版面设计图

  吴文俊

  吴文俊(Wentsun WU),男,1919年5月12日生于上海,1940年毕业于交通大学,1949年获法国国家博士学位。世界著名数学家, 中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一,现任中国科学院系统科学研究所名誉所长、研究员,中国科学院院士,第三世界科学院院士;曾任中国数学会理事长(1985-1987),中国科学院数理学部主任(1992-1994),全国政协委员、常委(1979-1998)。

  他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,在国内外享有盛誉。他在拓扑学的示性类、示嵌类的研究方面取得一系列重要成果,是拓扑学中的奠基性工作并有许多重要应用。他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。当前国际流行的主要符号计算软件都实现了吴文俊教授的算法。

  曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、Herbrand自动推理杰出成就奖(1997)、首届国家最高科学技术奖(2000)、第三届邵逸夫数学奖(2006)。

  吴文俊在数学上作出了许多重大的贡献。

  ◆ 拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。

  ◆ 数学机械化或机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。

  ◆ 中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解。

  欧拉

  欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

  事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:“天上有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。” 欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

  回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110),父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形(25+25+25+25=100)。然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。”

  父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

  父亲感到,让这么聪明的孩子放羊实在是可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学手抄报实用版面设计图

  数学奇才——耐普尔

  记得四大发明吗?它们是印度-阿拉伯记号,十进制小数,对数和计算机。其中的对数是十七世纪由耐普尔发明的。他1550年出生在苏格兰首府爱丁堡,从小喜欢数学和科学,以其天才的四个成果被载入数学史。其中的对数的发明使整个欧洲沸腾了。拉普拉斯认为“对数的发现以其节省劳力而延长了天文学家的寿命。”可以说对数的发现使现代化提前了至少二百年。下面我要给大家讲两个他的小故事:

  一次,他宣称他的黑毛公鸡能为他证实:他的哪一个仆人偷了他的东西。仆人们被一个接一个地派进暗室,要他们拍公鸡的背,仆人们不知道耐普尔用烟黑涂了公鸡的背,自觉有罪的那个仆人,怕挨着那个公鸡,回来时手是净的。

  还有一次耐普尔因他的邻居的鸽子吃他的粮食而感到烦脑。他恫吓道:如果他邻居不限制鸽子,让它们乱飞,他就要没收些鸽子。邻居认为他的鸽子是根本不可能被捉住的,就告诉耐普尔,如果他能捉住他们,尽管捉好了。第二天,邻居看到他的那些鸽子在耐普尔的草坪上蹒跚地走着,十分惊讶,耐普尔镇静自若地把它们装进一只大口袋。原来,耐普尔在他的草坪上各处撒了些用白兰地酒泡过的豌豆,使这些鸽子醉了。

栏目推荐
最新推荐
热门推荐