建筑工程配电无功补偿选择分析论文
摘要:主要通过对无功补偿的原理以及类型的分析,进而探讨了无功补偿的选择,希望能够为研究无功补偿的人员提供参考。
关键词:建筑工程;配电系统;无功补偿;分析;选择
在建筑工程配电系统中,使用无功补偿技术来达到节能目的,取得了很好的效果,但是采用哪种无功补偿方式就要根据建筑工程类型来决定,并不是所有的建筑类型都适合使用无功补偿装置,所以就建筑工程配电系统来说,要做好无功补偿的选择。在使用无功补偿装置时,要做好前期的准确工作。近些年来,无功补偿技术已经在建筑工程配电系统中得到了广泛的使用,正是因为这种技术的使用,提高配电系统的使用性能,也减少了能源的浪费,对建设节约型社会有着重要的影响。随着无功补偿技术的发展,其在建筑工程配电系统中得到更加广泛的使用。在此,笔者就无功补偿技术在建筑工程中的使用进行探讨。
1建筑工程配电无功补偿的基本原理
无功补偿技术之所以在配电系统中,得到了广泛的使用,主要就是因为该技术能够使配电系统在运行时,保持良好的状态,这样有效的降低了电能的耗损量,进而实现了节能的目标,增加了电力企业的经济效益。通常情况下,在对建筑工程配电系统进行施工时,配电网的输出功率由两部分组成,一部分是有功功率,主要是由于电气设备在运行使用时,对电力资源形成了消耗,这种消耗方式是直接的,这是由于有功功率的产生,才能将电能快速的转变为其他能源,进而实现了电力设备运行的目的;而另一部分就是无功功率,在这种模式下,电气设备不用消耗太多电能,而是利用其他方式将电能进行循环,进而达到电气设备运行的目的。在无功功率的状态下,不仅能够提高电能的利用效率,还能够提高电气设备的使用性能。建筑工程的配电系统耗费的电能很大,如果利用无功补偿装置,可能节省很多电能,进而实现了建筑工程配电系统的节能优化的目标,从大处说,有利于我国节约型社会的建设,从小处说,有利于建筑功能更好的发挥。近些年来,无功补偿技术得到了飞速的发展,人们将其与各种现代技术有效的融合起来,使无功补偿装置性能更加优良,更好的为人们服务。
2无功补偿方式
2.1三相电容自动补偿。三相电容自动补偿结构简单,成本低,在供配电系统中被广泛应用。它在补偿时,信号取自三相中的任意一相,根据检测结果的需要,三相同时投切相同数量的电容。三相电容自动补偿适用于三相负载平衡的供配电系统,当三相负载平衡,三相电压、电流接近时,三相同时投切可保证三相电压的质量。但如果三相负荷不平衡,用三相电容自动补偿的方法来补偿无功电流、提高功率因数,不但不能达到预期的效果,而且可能会造成设备的损坏。
2.2分相电容自动补偿。分相电容自动补偿就是每相单独补偿,通过检测每一相的电压、电流,当每相功率因素或电压与设定值比较超出某一范围时,每相分别进行单独补偿,有针对性地进行无功补偿,避免补偿的盲目性,提高资源利用率。分相电容自动补偿较三相电容自动补偿复杂,但近年来随着计算机技术在供配电系统中的应用,分相电容自动补偿已在民用建筑中推广应用。
2.3混合补偿。较常见的混合补偿是设一组三相电容自动补偿的时,再设一组分相电容自动补偿,系统根据检测结果自动选择补偿方式,资源可得到充分利用,但前期投入费用相对高些。
3建筑工程配电系统功率补偿的选择
不同的建筑工程类型使用的负荷时不相同的,但是大部分建筑工程采取单相负荷的方式,这种负荷方式最大的特点就是照明、空调等设备会随着负荷的变化而发生变化,这种现象在建筑住宅工程建设中最为明显,因为每户居民的用电量不同,三相符合就更难实现平衡,因此对于民用建筑来说,其负荷形式应该是三相不平衡负荷。那么,针对这样的负荷形式,该如何对其进行功率补偿的选择呢?笔者总结如下:通常情况下,对三相不平衡负荷进行无功补偿时,选择的应该是三相电容自动补偿方式,但是这种方式是按照某一相的电压测定的,所以就会出现这样的现象,也就是对测定的相进行无功补偿是合理的,而是其他两相负荷进行补偿就容易出现过补偿或者补偿不足的现象,这两种现象都会产生不良的结果。比如如果是过补偿的情况,那么,该相的电压就会出现升高的现象,使用该相的电气设备或者配电系统的保护元件就会出现损坏;而如果出现补偿不足的现象,那么该相的回路电流就会出现增大的现象,而使用该项的.电气设备以及线路等会因为电流的突然增加而出现烧坏的现象。如果利用这种补偿方式,在其补偿的过程中,也会出现过补偿或者补偿不足的现象,这种现象对整个电网的运行都会产生消极影响,因此在民用建筑中,不能使用上述的补偿方式,因为这种方式不但能起不到节能的作用,还会造成一定的浪费。
4分相电容自动补偿其他注意事项
在选择电容器额定容量时应注意与变压器容量的匹配问题,如果选择大容量电容器组来补偿小容量变压器,则往往会难以做到补偿精确;而若是采用小容量电容器组补偿大容量变压器,则将会导致电容器的投切频繁。我们知道,电容器在接通时,会出现极高的尖峰电流,而若是在电容器组中接入单个电容器,由于已接入电网的电容器此时已成为附加能源,则会产生更大的尖峰电流,这种尖峰电流将对开关及电器设备造成损坏。因此,我们应尽可能减少电容器的投切次数,也即不宜采用小容量电容器组来补偿大容量的变压器。另一方面,由于目前电网中大量存在非线性负荷(如众多的半导体功率元件等),使得电网中的谐波含量常常很高。装在电网上的电容器,从低压侧看它与变压器的感抗及剩余的电网电感形成一个振荡回路。当这一回路的固有频率与电流谐波的频率相互重合时,振荡回路的励磁电流将使回路产生很高的过电流造成供电回路过载,甚至引起电容器的烧毁。因此,在电容器接通回路中需要串联一个电感,一则防止产生谐振,二则可吸收高次谐波电流。
综上所述,可知无功补偿技术在建筑工程配电系统中的确起到了很大的作用,促进了电力事业的发展。但是在具体使用时,也不能盲目的操作,要考察好建筑类型,之后再选择合理的无功补偿装置,这样才能取得事半功倍的效果。在安装无功补偿装置时,一定要请专门的人员进行安装,尽可能的避免过补偿或者补偿不足现象的发生,因为一旦出现这种现象,不仅会损坏电气设备,还会影响建筑工程配电系统的正常运行,因此安装人员的水平很关键。
参考文献
[1]张光涛.电力变电设计中的无功补偿技术[J].通讯世界,2016(1):130.
[2]王涛.10kV及以下配网电容无功补偿及其节能[J].通讯世界,2016(1):12.
【建筑工程配电无功补偿选择分析论文】相关文章:
9.车辙试验分析论文