- 相关推荐
分布式电源系统中直流母线电压变换器的选择与应用
在电路板上分配电力的传统方法基本上有两种:第一种是把48 V变成3.3 V的输出电压,然后再用负载点(POL)变换器把3.3 V变换成负载点所需要的电压。一般地说,在电路板上最需要的就是3.3 V,所以选择3.3 V作为母线电压,这样做的益处是,只需要一次变换,不存在多级变换的方案中每级都存在的损耗。另外一个方法是,先把48 V变换为12 V,然后再把12 V的母线电压变换成为负载点电压,并不是直接把12 V送到负载上。这个方案比较适合功率较高的电路板使用。两种分布式供电系统的结构(DPA)如图1所示。这两种分布式供电方案各有长处,也各有它的缺点。如果电路板上主要的负载需要3.3 V的工作电压,而且在整个电路板上有多处需要3.3 V,在这种情况下,一般是采用母线电压为3.3 V的分布式供电系统。之所以采用这个方案通常是为了减少电路板上两级电压转换的数量,从而提高输出功率最大的电源的效率。但是,在使用母线电压为3.3 V的分布式供电系统时,它还为每个负载点变换器供给电力。这些负载点变换器产生其他负载所需要的工作电压。另一个问题是,3.3 V输出需要在电路中使用一只控制顺序的FET晶体管。在线路卡上,大多数工作电压需要对接通电源和切断电源的顺序加以控制。 在这种分布式系统中,只能用电路中的顺序控制FET晶体管来进行控制。因为在隔离式转换器中,没有对输出电压的上升速度进行控制。在电路中的顺序控制FET晶体管只是在启动和切断电源时才用得上。在其他时间,这些FET晶体管存在直流损失,会影响效率,增加了元件数量,也提高了成本。由于工作电压一年一年地在下降,在将来,工作电压将下降到2.5 V。在电路板上功率同样大的情况下,电流增大32 %,在配电方面的损失增大74 %左右。电路板上所有其他的工作电压。在电路板上往往有其他输出电压都要由3.3 V的母线电压经过变换得到。往往需要几个负载点输出电压,每个输出电压可以使用高频开关型直流/直流转换器来产生。负载点转换器的高频开关会产生噪音,噪音会进入3.3 V输入线路。由于3.3 V是直接为负载供电的,所以需要很好的滤波器来保护 3.3 V的负载。专用集成电路(ASIC)是用3.3V母线电压供电的,它对噪音十分敏感,如果输入电压没有很好地滤波,有可能会损坏ASIC。ASIC的价钱很高,当然极不希望出现这样的事。如果电路板上需要很大功率,而且电路板上没有那一种电压的负载是占主要的,在这种情况下,一般是采用12V 分布式供电系统。采用这个方案时,在功率相同的情况下,由于电流较小,配电的损失降低了。对于这种供电方案,所有的工作电压都是用负载点转换器来产生的。 在偏重于使用负载点转换器的情况下,用12 V的分布式供电系统实现就容易得多。也可以用电路中的顺序控制FET晶体管来控制负载点接通电源和切断电源的顺序,其中有一些可以由负载点本身来控制,这时就不需要控制顺序的FET晶体管,也减少了直流损失。在市场上现在可以买到的输出电压为12 V的模块,一般是功能齐全的砖块型转换器,它提供经过稳压的12 V输出电压。 在砖块型12 V转换器中有反馈,通过一只光耦合器把反馈信号送回到转换器的原边。砖块型12 V转换器的有效值电流很大,次级需要额定电压为40 V至100 V的FET晶体管,额定电压较高的FET晶体管的Rds(on)高于额定电压较低的FET晶体管的Rds(on),因而转换器的效率比较低──如果平均输出电较低的话就可以用额定电压较低的FET晶体管。在给定输出功率的情况下,具有稳压作用的砖块型转换器往往相当贵,而且体积大,因为在模块内有相当多的元件。使用分布式的12 V母线电压时,也会略微降低负载点转换器的效率,因为输入电压直接影响负载点转换器的开关损生。
如图2所示,在电路板上进行配电,最好的方法是使用一个在3.3 V与12 V之间的中间电压。在使用两级功率转换的情况下,这个中间母线电压不需要严格地进行稳压。新型负载点转换器的输入电压范围很宽,这就是说,产生中间母线电压的隔离式转换器可以用比较简单的方法来实现。对于负载点转换器来讲,最优的输入电压介于6 V至8 V之间,这时,功率损失最小。就两级转换的优化而言,这是最好的办法,尤其是对于功率为 150 W的系统。结果我们可以在很小的面积中、用数量很少的元件,设计出一个高效率的隔离式转换器。功能齐全的砖块型转换器使用的元件数量高达五十个还要多,整个设计不必要地变得十分复杂。如果把输出电压稳压电路去掉,可以大量地减少模块中的元件数量。直流母线电压转换器使用隔离式转换器,它工作在占空比为50 %的状态,因而可以使用比较简单、自行驱动的次级同步整流器,最大程度地提高了功率转换的效率,也最大程度地减轻了对输入电压和输出电压滤波的要求,而且还提高了可靠性。
用于电路板的两级功率转换的未来发展
直流母线电压转器是把48 V输入变成中间母线电压的新方法。中间母线电压为负载点转换器供电。做一个隔离式转换器并不难,它是开环的,占空比固定为50 %,把48 V输入电压变为 8 V的中间母线电压。它使用变比为3:1的变压器,再通过初级半桥整流器得到输入电压与输出电压的比为6:1。由于现在有了作为第二级的负载点转换器解决方案,例如 iPOWIRTM 技术,它的输入电压范围很宽,所以对于48 V系统来讲,这个方法极有吸引力,它也可以用于输入电压变化范围很宽的系统(36 V 至75 V)。 当输入电压在很宽范围变化时,输出电压也以同样的比率变化,所以如果输入电压在36 V至75 V的范围变化,输出电压的变化范围就是6 V至12 V。直流母线转换器作为前端电路加上作为第二级的iPOWIRTM,便构成高效率的两级功率转换方案。直流母线转换电路的效率最高、占的空间最小,在功率密度方面是最好的,大量地减少了元件数量,因而有利于降低总成本。这个方案对输入滤波和输出滤波的要求也是最低的,所以可以进一步减少电容器和其他元件。这种电源系统的控制、监控、同步以及顺序控制都大大地简化了。图3是直流母转换器设计的例子,其中使用了很有创意的新技术,因而可以达到这样的性能。如图4所示,可以利用直流母线转换器解决方案来实现两级供电系统。直流母线转换器芯片组四周是原边半桥整流器控制器和驱动器集成电路和MOSFET技术,正是由于这个芯片组,才能达到这样的性能。
【分布式电源系统中直流母线电压变换器的选择与应用】相关文章:
谈智能决策支持系统及其在林业中的应用研究08-21
电气自动化系统在石油化工行业中应用论文05-14
电压电流转换接口AM442原理及应用05-29
一种在分布式个域网中主控设备的重定位机制05-11
网站站群管理系统的维护与应用论文06-21