- 相关推荐
负载串联谐振逆变器的逆变控制策略
1 概述
逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。
串联谐振逆变器在感应加热领域应用非常广泛,图1是它的基本原理图。它包括直流电压源,开关S1~S4和RLC串联谐振负载。
由于设计的是电压型负载高频逆变器,而达到高频,则要减小开关损耗。减小开关损耗的方法之一就是采用零电流开关。对于串联RLC电路,只有在LC串联谐振时,使得流过电阻R的电流iR和加在RLC两端的电压URLC同步,才能达到零电流开关要求。为此在全桥电路控制方式中,我们选取双极性控制方式。即开关管Sl和S3,S2和S4同时开通和关断,其开通时间不超过半个开关周期,即它们的开通角小于180°。
2 逆变控制电路的设计
控制电路原理框图如图2所示。从图2可以看出,逆变电路可以工作在他激和自激两种状态。当逆变电路工作在他激状态时,控制信号从他激信号发生器发出,电路工作频率固定,由他激信号发生器控制。当逆变电路工作在自激状态时,电路的输出电流信号经过电流互感器采样,通过波形变换把正弦波变成方波,然后方波信号经单稳态电路防止干扰,接着送到频率跟踪电路,使得开关管的工作频率能够跟踪电流反馈信号。工作在自激状态时,逆变电路的工作频率由负载本身的固有频率决定。本电路中逆变电路的工作频率由放电负载和变压器漏感组成的串联谐振电路的自然频率决定。
2.1 限幅、整形和单稳态电路
如图3所示,从电流互感器CT取出的反馈信号,通过电阻R6引入控制电路。引入控制电路的信号跟负载电流的大小,电流互感器的变比以及取样电阻R6的大小有关。在实际应用中,这个引入控制电路的信号可能会超过CMOS的最大工作电压而导致器件的损坏,因而有必要在这个信号后面加一个限幅电路。二极管D1及D2就起到这个作用。电流反馈信号近似正弦波,经过D1及D2和比较器以后,就变成了有正负的方波信号,经过D4把负的部分去掉,整形成占空比为50%的方波信号。
图4
电路在工作过程中不可避免地受到各种各样的外部干扰,加上其本身元器件的分布参数,使得电流反馈信号并不是理想的波形。由于后级电路的锁相环用的是边沿触发,如果前面的方波信号不好,会导致后级频率跟踪电路跟踪失败,从而导致了电路无法正常工作。所以,在电路中必须加入一个具有特定功能的电路,将有干扰的波形重新整形,然后输入后一级电路。单稳态触发器就实现这种功能,它在外部脉冲的作用下,输出具有特定宽度和幅值的矩形脉冲,经过一定时间,又自动回复到初始状态。
2.2 频率跟踪电路
由电路的负载特性分析可知,电路的负载不是固定的负载。当电压升高,功率增大以后,负载固有的自然谐振频率会发生改变。这个时候如果逆变电路工作在开环状态下,由于电路的工作频率偏离了负载的自然谐振点,这就使得电路的输出功率不能随着直流母线电压的升高而同步升高,输出功率达不到要求。因此,必须使得逆变电路工作在闭环状态,实现频率的自动跟踪。
频率跟踪电路如图4所示。电路启动的时候,先开控制电路,此时电流反馈信号没有建立,逆变电路不能工作在自激状态。在图4中,控制电路开机后,电流反馈信号为0,比较器U1B输出为高电平,电子开关4066导通,Vcc通过R8与RP1分压以后供给4046的压控振荡器输入端,这个电压用来控制压控振荡器的频率,调节RP1,就可以得到他激电路所需要的频率。一般都把他激信号发生器的输出频率调得跟负载的自然谐振频率相差不大,这样有利于电流反馈快速建立,让逆变电路尽快进入自激工作状态。
在主电路开机时,可控整流电路输出电压调得比较低,这时候电流反馈信号比较小,随着直流母线电压慢慢升高,电流反馈信号逐步增大。在这个信号经过半波整流以后得到的直流电平(C2上的电压)没有超过R6两端电压以前,电路还是工作在他激状态。当电流反馈信号达到一定的值使得C2上的电压超过了R6两端电压以后,比较器U1B输出为低电平,把4066关断,RP1分压为0,没有办法通过二极管影响压控振荡器,这样压控振荡器的电压就由低通滤波器提供,逆变器工作在自激状态。由于电容C3的存在,使得电路在他激转自
【负载串联谐振逆变器的逆变控制策略】相关文章:
感应加热电源的负载匹配方案06-01
企业财务风险管理及控制策略论文07-24
基于dsp三相变流器滑模变结构控制(c)06-03
小学数学概念教学的策略03-02
市场推广策略开题报告10-10
浅议企业的投标策略与报价技巧06-04
童装市场分析及营销策略06-06
市场营销策略论文11-06
城市GPS控制网施测质量控制措施探讨05-28
用PC测量交变磁场05-11