- 相关推荐
基于空间矢量调制的三相矩阵式变换器
摘要:介绍了空间矢量调制的双向开关矩阵式变换器的设计和实现方法。空间矢量调制采用输出线电压和输入电流矢量进行同步调节的控制策略,能实现矩阵式变换器输入输出波形为良好正弦、功率因数为1,并能确保感应电机良好工作。为了实现这种控制策略并把PWM波送到相应的开关,采用了数字信号处理(DSP)技术和通用逻辑阵列(GAL)技术。仿真和实验结果验证了这种控制策略的实际可行性。引言
随着可控交流电气传动的发展,PWM变频器的应用为自动化和节能赢得了可观的效益,同时也带来了谐波污染、低功率因数、直流滤波电容寿命有限等负面影响。而“绿色”变频器应具备输入和输出电流都是正弦波;输入功率因数可控,带任何负载都能使功率因数为1.0;可获得工频上下可控的输出频率等品质。目前的三电平双PWM交-直-交变频器、多逆变单元串联的中压变频器虽都可达到或接近这些要求,但这些装置非常笨重。矩阵式变换器与其相比具有下述非常明显的优势:
图1
--输入功率因数正负可调,输出电压频率连续调节,功率可双向流动;
--无直流母线环节,传递能量密度高;
--输入波形好,无低次谐波,波形失真度小;
--体积小,结构紧凑。
正因为矩阵式变换器具有如此明显的优势,近年来它已成为电力电子研究的热点之一。
图2
1 矩阵式变换器的结构
3φ-3φ矩阵式变换器是一种强迫换相的交-交变换器,它由9个可控的双向开关,利用PWM控制将交流供电电源直接变换成负载所需的变压变频电源。其结构如图1所示。输入侧的L-C滤波器可有效减少输入电流的开关频率谐波。
采用空间矢量调制时,矩阵式变换器认为是两个部分的串联组合。第一部分是AC/DC电压源整流,第二部分是DC/AC电压源逆变。图2是矩阵式变换器的等效交-直-交结构。
2 空间矢量调制(SVM)
能满足输入电压不被短路、输出电流不突然开路的矩阵式变换器开关组合共有27种,但有6种在等效交-直-交变换中找不到对应的开关组合,这6种是三个输出相分别连到三个输入相的开关组合。可用的21种开关组合。
三相开关动作所能形成的定子电压空间矢量有8种,即6种有效矢量U1~U6,依次表示U1(100)、U2(110)、U3(010)、U4(011)、U5(001)、U6(101),2种零矢量U7及U8,表示为U7(000)和U8(111),它们的空间位置和相互关系如图3所示。括号中的数字,第一位表示A相,第二位表示B相,第三位表示C相,当某一相的上桥臂开关导通时记为1,下桥臂开关导通时记为0。利用这些电压空间矢量的线性组合,可以获得更多的与U1~U8相位不同的新的电压空间矢量,最终构成一组等幅不同相位的电压空间矢量。
如图3用U1、U6和零矢量来合成新的矢量,各矢量的作用时间可用开关周期Ts中的占空比来表示。
U1矢量的占空比(作用时间)为
Dα=tα/Ts=musin(60°-θv) (1)
U6矢量的占空比(作用时间)为
Dβ=tβ/Ts=musinθv (2)
零矢量的占空比(作用时间)为
Dou=tou/Ts=1-Dα-Dβ (3)
式中:mu为电压调制系数,
同理对于虚拟整流器部分也可采用复空间表达方式定义输入相电流矢量,获得输入电流空间矢量调制的方案。
双空间矢量PWM调制是对输入电流和输出电压同步调制,逆变器部分的理想输出线电压基准矢量圆和整流器部分的理想输入相电流基准矢量圆都被划分为6个扇区,从而有36种可能的组合。以虚拟整流器、逆变器均工作在第I扇区为例,整个输入相电流和输出线电压矢量合成过程共有I6-U6,I6-U1,I1-U6,I1-U1及零矢量I0-U0五种组合。即
I6-U6:
Dxα=mumisin(60°-θi)sin(60°-θv) (4)
I6-U1:
Dxβ=mumisin(60°-θi)sinθv (5)
I1-U6:
Dyα=mumisinθisin(60°-θv) (6)
I1-U1:
Dyβ=mumisinθisinθv (7)
I0-U0:
D0=1-Dxα-Dxβ-Dyα-Dyβ (8)
式中:mi为电流的调制系数;
【基于空间矢量调制的三相矩阵式变换器】相关文章:
基于DSP正弦波调制的三电平变换器03-18
矩阵式变换器双向开关四步换流技术研究03-18
一种基于3525的半桥变换器03-07
基于MATLAB的正交振幅调制与解调仿真分析(一)03-07
带回能吸收无损钳位电路的三相单级变换器11-22
基于EL7558BC的DC/DC变换器的设计与实现03-19