高速DSP数据采集的信号完整性问题

时间:2024-06-21 00:22:24 理工毕业论文 我要投稿
  • 相关推荐

高速DSP数据采集的信号完整性问题

摘要:深入研究高速数字电路设计中的信号完整性问题;分析电路中破坏信号完整性的原因;结合一个实际的DSP数据采集系统、阐述实现信号完整性的具体方案。

引言

当前,日渐精细的半导体工艺使得晶体管尺寸越来越小,因而器件的信号跳变也就越来越快,高速数字系统的快斜率瞬变和极高的工作频率,以及很大的电路密集度,导致高速数字电路系统设计领域的信号完整性问题以及电磁兼容性问题日趋严重。破坏了信号完整性将直接导致信号失真、定时错误,以及产生不正确数据、地址和控制信号,从而千万系统误工作甚至导致系统崩溃。因此,信号完整性问题已经越来越引起高速数字电路设计人员的关注。

1 信号完整性问题产生的机理

信号完整性的问题主要包括传输线效应,如反射、时延、振铃、信号的过程与下冲以及信号之间的串扰等,涉及传输线上的信号质量及信号定时的准确性。

良好的信号质量是确保稳定时序的关键。由于反射和串扰造成的信号质量问题都很可能带来时序的偏移和紊乱。例如,串扰会影响信号的传播延迟,导致在时钟的上升沿或下降沿处采不到准确的逻辑;反射会造成数据信号在逻辑门限附近波动,从而影响信号上升沿或下降沿变化;时钟走线的干扰会造成一定的时钟偏移。

信号完整性分析与设计是最重要的高速PCB板级和系统级分析与设计手段,在硬件电路设计中扮演着越来越重要的作用。一个数字系统能否正确工作,其关键在于信号定时是否准确。信号定时和信号在传输线上的传输延迟与信号波形的损坏程度密切相关。信号传输延迟和波形破损的原因复杂多样,但主要是以下三种原因破坏了信号的完整性。

①电源、地址噪声。它主要是源自于电源路径以及IC封装所造成的分布电感的存在。当系统的速度愈快,同时转换逻辑状态的I/O引脚个数愈多时,会产生较大的瞬态电流,导致电源线上和地线睥电压波动和变化,这就是平进所说的接地反弹。接地反弹是数字系统的几个主要噪声来源之一。接地反弹的噪声常见的现象是,会造成系统的逻辑运作产生误动作,尤其近年来日益风行的3.3V逻辑家族。

②串扰。信号在沿着传输线传输时,是以电磁波的形式传输的。电磁波包含时变的电场和磁场。因为电磁场的能量主要是在传输线的外部,根据麦克斯韦方程知道,时变场会在周围的传输线产生电压和电流。那么对受到干扰的传输线而言,这个电压和电流就是由串扰造成的。串扰主要源自两相邻导体之间所形成的互感与互容。串扰会随着印刷电路板的绕线布局密度增加而越显严重,尤其是长距离总线的布局,更容易发生串扰的现象。这种现象是经由互容互感将能量由一个传输线耦合到相邻传输线上的。

③反射。反射现象的原因是:信号传输线的两端没有适当的阻抗匹配,印刷电路板上的分支布局产生特性阻抗的断点,过孔的尺寸以及其它互连所造成的阻抗不连续。所谓特性阻抗是定义为,“当导线上流经有高频信号时,所呈现的电压/电流比值”。那么对于确定的传输线而言,其特性阻抗为一个常数。信号的反射现象就是因为信号的驱动端和传输线的特性阻抗以及接收端的阻抗不一致所造成的。

2 保证信号完整性的方法

2.1 抑制接地反弹

通过以上分析可知,电源路么以及IP封装所造成的分布电感是决定接地反弹的关键之一。要抑制接地反弹的影响,首先是减少IC封装的分布电感。在考虑IC引脚的配置图时,就应该将时钟脉冲信号或数据/地址总线的引脚位置摆放在较靠近芯片的地方。其次,是采用分布电感量较小的IC封装技术。表1列举了几种常见的IC封装技术的分布电感量,可以看出表面贴片的封装技术通常会比DIP封装技术少30%的接地反弹;然后是降低印刷电路板端的分布电感量。由于电感与导体的长度成正比,与宽度成反比,所以在高速数字系统里大都采用多层板。其中会在里层摆放一个或一个以上的接地层,接地层面积相当宽广,目的旨在减少其地端回路的电感量。另外,电路设计时应尽可能避免让某个逻辑门驱动太多的负载。因为在数字电路若有多个并联的逻辑装置。总输入电容是将每个逻辑装置的输入电容直接相加。

表1 几种IC封装技术的分布电感与电容

IC封装技术分布电容/pF分布电感/nHDIP封装0.412~18PGA封装12表面贴片封装11~12Write Bond0.51~2TAB0.61~6PCB thru-hole via11

2.2 解决串扰问题

信号之间由于电磁场的相互耦合而产生的不期望的噪声电压信号称为信号串扰。“串扰”主要是源自两相领导体之间的所形成的互感和互容。串扰超出一定的值将可能引发电路误动作,从而导致系统无法正常工作。下面分别探讨互容、互感与串扰的关系,以及如何解决串扰问题。

(1)电容耦合

串扰=(ZbCm)/tr

式中,Zb为受扰线的特性阻抗;Cm为互容;tr为输入到干扰线的入射电压之上升时间。

要改善互容产生的串扰,可以从两个方面着手。一是减少互容Cm,做法是在两相邻的传输线中间加进屏蔽措施。通常,在两个铜箔通路中加装一个接地屏蔽通路,用以改善互容的干扰。二是在时序规定允许的情况下,增加转态较频繁的信号之上升时间。

改善互感所产生的串扰,惟有减少流经互感的电流所形成的回路面积才是较为简易可行的办法。可以借助降低导线与接地平面之间的距离,减小并行信号长度,缩短信号层与平面层的间距,增大信号线间距等措施,来减少两导线的互感量。

2.3 改善反射

反射是产生干扰的几个重要来源之一。为改善因线路的阻抗不匹配而造成反射的现象,可以选择采用“布线拓扑”和“终端技巧”的办法。

利用适当的布线拓扑法来改善反射现象,通常不需要增添额外的电子组件(例如,终端电阻或者钳位二极管)。常见的布线拓扑法有4种,分别是树状法、菊链法、星状法和回路法,如图1所示。其中树状法是最差的布线法,它所造成的反射量最大,额外的负载效应和振铃现象都需要加费心来处理;就“反射”的观点,菊链法是较佳的布线法

【高速DSP数据采集的信号完整性问题】相关文章:

基于DSP的USB口数据采集分析系统03-18

基于USB总线的高速数据采集系统03-26

基于DSP和USB的数据采集处理系统的设计03-07

ISP技术在高速数据采集模块中的应12-07

利用DSP和CPLD增强数据采集的可扩展性03-20

基于DSP和以太网的数据采集处理系统03-20

USB接口的高速数据采集卡的设计与实现03-18

换体DMA高速数据采集电路的CPLD实现03-18

多DSP系统实现雷达极化信号两对IQ的采集和处理03-18