糖对根系生长发育的影响与调控机制
近年来,国内外学者研究证实糖在调控植物根系生长发育过程中扮演着重要的角色,以下是小编搜集整理的一篇探究糖对根系生长发育的影响的论文范文,欢迎阅读参考。
引言
根系是植物长期适应陆地条件而形成的重要器官,在植物生长发育过程中发挥着固定植株、吸收水肥、合成运输有机无机物质等众多功能[1-4],间接地调控着地上部诸多重要器官如茎、叶、花、果实等生长发育进程[5-6].因此,研究植物根系生长发育的调控机理对于人们深入了解根系地上部重要器官发育进程具有重要意义。植物由根系吸收土壤中水肥并通过叶片光合作用生成糖,而糖不仅作为植物代谢的能量来源和结构物质,同时还作为信号分子参与植物体内众多代谢过程,影响着植物的种子萌发、下胚轴伸长、子叶伸展、根系生长发育、开花和衰老等众多生理生化过程[7-8].
糖作为信号分子对植物的调控是研究的热点,己糖激酶(HXK)和SNF1-相关蛋白激酶(SnRK)参与植物糖感知和糖信号转导[9-10],TOR激酶在糖信号转导中也发挥重要作用[11-12].此外,糖还与植物激素相互作用调控植物的生长发育[13-15].近年来,国内外学者研究证实糖在调控植物根系生长发育过程中扮演着重要的角色。为此,笔者综述了糖对根系生长发育的影响及其调控根系生长发育机理的研究进展,以期为后续糖调控植物根系的研究提供参考。
1糖影响植物根系的生长发育
植物体内的糖主要源自叶片光合产物,构成植物组织结构并提供能量,糖还可作为信号分子促进根系的生长发育和根系的方向性生长。近年来,国内外学者研究证实糖影响植物根系的生长发育,并取得了较大突破。
1.1糖影响主根的生长发育
糖影响植物根系生长发育的研究报道较多。
Kicher等[16]研究发现光刺激幼苗根生长信号由子叶感知,子叶光合作用产生糖类经韧皮部运输到根尖,从而促进植物主根伸长。研究发现仅外源葡萄糖或蔗糖可促进根伸长和激活根分生组织,而其他外源糖无此功效,糖酵解和线粒体氧化磷酸化过程被阻断时根系根生长及分生组织活性完全停滞。由此可断定葡萄糖作为关键营养信号分子调控叶片光合作用和促进根尖分生组织活性是通过糖酵解和线粒体氧化磷酸化来实现[17].外源葡萄糖可促进植物主根的生长,高浓度葡萄糖则抑制主根生长。从不同浓度葡萄糖处理的幼苗根尖CYCB1;1::GUS、QC25::GUS和QC46::GUS表达来看,葡萄糖不是通过影响分生区细胞分裂活性及干细胞活性,而是通过抑制根尖分生区的长度来调节主根生长[18].由此说明,选择合适的糖浓度对于植物主根生长状况是极为重要的。此外,外源葡萄糖也可增加侧根和根毛数量,且存在一定的浓度效应,即不同浓度的葡萄糖处理的根系侧根和根毛的数量均发生变化[19].
1.2糖影响根系的方向性
植物在生长发育过程中,根系需应对重力效应并调整其生长方向以克服物理障碍,从而保持对水分和养分的最佳吸收状态。因此,根系的方向性生长对植物生长发育研究极其重要。根方向性生长是一个复杂的过程,受到多种内外环境信号的调控。研究发现,糖可诱导根方向性生长,并且蔗糖和葡萄糖促使根生长的垂向偏离最为明显,增加葡萄糖浓度能够增强根偏离度[20].淀粉粒在重力感应中具有重要作用,盐胁迫和根向水压可通过降解根尖柱细胞中的淀粉粒从而引起根生长在垂直方向的偏离[21-22],而葡萄糖诱导根生长方向的偏离并不是通过淀粉粒的降解来实现[20],因为在葡萄糖处理下,根尖柱细胞的淀粉粒并没有消失,高浓度葡萄糖下柱细胞淀粉粒的积累反而增加。
2糖调控根系生长发育的机理
糖调控根系生长发育的机理备受关注,目前,针对糖作为营养物质影响根系生长发育的研究较少,但糖信号转导及其与植物激素的共同作用调控机理的研究报道较多。
2.1糖信号转导调控根生长发育
2.1.1糖信号转导在植物体内,蔗糖是重要的光合产物,但其水解产物(葡萄糖)则是糖信号分子。HXK参与植物糖的感知和信号转导,是糖酵解的关键酶,在催1号,从而触发糖信号的传递。根据是否依赖HXK的参与,己糖信号转导可分为HXK依赖性转导和HXK非依赖性转导2种途径[23-27].在HXK依赖性转导途径中,甘露糖和2-脱氧葡萄糖作为HXK的底物能够抑制光合基因表达,而不能被HXK磷酸化的6-脱氧葡萄糖和3-O-甲基葡萄糖或糖酵解的中间代谢物则不能引1[28].此外,通过电渗法将6-磷酸葡萄糖转入原生质体也不能抑制光合基因表达,由此说明启动糖信号的是己糖磷酸化的过程而非磷酸化糖本身[29].在HXK非依赖性转导途径中,糖诱导下基因CHS、PAL和ASN在拟南芥野生型与转基因植株35SHXK1、35S-antiHXK和35S-ScHXK2中的表达水平相当,由此说明该过程是不依赖HXK的[30].由于6-脱氧葡萄糖和3-O甲基葡萄糖等己糖不是HXK底物,不能被HXK磷酸化,因此,可能是通过调控己糖转运来控制己糖在细胞内的水平。Godt等[31]在红藜悬浮细胞中发现6-脱氧葡萄糖能诱导蔗糖合成酶基因和蔗糖转化酶基因表达。
激酶SnRK是调控糖信号转导的重要因子。
SnRK家族包括3个亚家族成员,分别为SnRK1、SnRK2和SnRK3,其中SnRK1与酵母SNF1在结构与功能非常相似。SNF1是蔗糖非发酵蛋白激酶,缺少该酶时酵母细胞不能利用蔗糖而被分离。在葡萄糖存在时SNF1表达被抑制,并且SNF1对所有已知葡萄糖依赖性抑制效应起调控作用[32].SNF1与SnRK1同属于保守异源三聚体激酶,包括催化亚基α与调节亚基β和γ。如图1所示,糖代谢中产生的葡萄糖-6-磷酸(G6P)和海藻糖-6-磷酸(T6P)可抑制SnRK1活性[33-36],蔗糖能促进T6P积累从而间接抑制SnRK1活性,糖饥饿和胁迫则能激活SnRK1蛋白激酶。SnRK1磷酸化会抑制磷酸蔗糖合成酶(SPS)、海藻糖-6-磷酸合酶(TPS)和硝酸还原酶(NR)的催化活性,从而调控植物碳水化合物及氮素代谢[35].此外,SnRK1会引起广泛的转录重编程,它能通过磷酸化激活不同转录因子家族从而抑制核糖体蛋白编码基因表达[36]1TOR激酶是糖信号转导中的又一调控因子,是存在于真核生物中高度保守的一种大分子Ser/Thr激酶,是免疫抑制剂雷帕霉素的靶物质。雷帕霉素通过它在细胞内的受体FKBP12结合TOR的功能域FRB域,从而抑制TOR蛋白激酶的活性。TOR能够调节细胞内核糖体发生和蛋白质合成等生理生化过程,最终调控真核生物细胞的生长、增殖、凋亡和自噬[37].在酵母和动物中,TOR激酶以2种不同蛋白复合体TORC1和TORC2形式存在,其中只有TORC1在植物中是保守的,包含3种蛋白质TOR,RAPTOR和LST8[38].在植物中,突变体lst8-1和TOR敲除植株表现出相似的生长表型,且都引起碳氮代谢变化[38-40].研究证实葡萄糖能激活TOR激酶,进而促进根分生组织激活。TOR信号还参与调控糖代谢。如图1所示,葡萄糖能够诱导TOR活性,TOR活性增强时则激活糖酵解及棉子糖合成。在拟南芥TORRNAi株系中,TOR受到抑制会引起淀粉的大量积累及三酸甘油酯(TAG)增加,三羧酸循环(TCA)中间产物也有明显增加。突变体lst8-1及经雷帕霉素处理植株均有同样效果,这说明TOR对淀粉和TAG合成及TCA循环有抑制作用[41].
2.1.2糖信号转导对根生长发育的调控糖信号转导参与调控植物根系的生长发育,现有研究重点为HXK和葡萄糖-TOR信号调控根系生长发育,而SnRK激酶调控根生长发育研究还有待深入。
糖调控根生长发育有依赖HXK和不依赖HXK信号转导途径。在葡萄糖处理下,己糖激酶HXK1突变体gin2根系表现为正常生长,根长及分生组织活性与野生型类似,由此表明葡萄糖对根分生区激活并不依赖HXK参与[17].gin2在不同浓度葡萄糖处理下主根长和侧根数目变化程度明显小于野生型,所以葡萄糖对主根伸长和侧根增多的浓度效应依赖于HXK介导的糖信号响应[19].
已有研究证实葡萄糖-TOR蛋白激酶信号在植物根毛形成中起决定性作用,同时该信号通路也参与植物体其他组织器官的形成与发育,如子叶、叶柄、叶片及主根和侧根生长[42],为深入研究光合作用中葡萄糖-TOR信号调控机制及其对根分生组织影响,Xiong等[17]研究发现TOR参与葡萄糖对根伸长及分生组织激活的诱导效应。例如,拟南芥幼苗在葡萄糖和雷帕霉素同时存在下,根伸长受到抑制,分生组织活性明显降低;TOR突变体幼苗在葡萄糖处理下效果类同。此外,葡萄糖可激活内源TOR表达。在阻断葡萄糖-TOR信号时,生长素和细胞分裂素报告基因DR5::GFP和TCS::GFP以及干细胞和静止中心的标记PLT1::GFP和WOX5::GFP都能正常表达。因此,说明生长素和细胞分裂素信号及根干细胞维持过程不参与葡萄糖-TOR信号激活根分生组织过程[17].
葡萄糖-TOR信号调控主要代谢和次级代谢、细胞周期、转录、信号传导、运输和蛋白质折叠等相关基因的转录重编程。其中,通过比较葡萄糖-TOR信号靶基因和已报道的细胞周期相关基因发现许多靶位基因与典型G1期和S期基因相重叠,因为转录因子E2F是植物和哺乳动物调控细胞周期进程和DNA复制S期基因的主调控因子[43],对拟南芥E2Fa靶基因生物信息学分析发现,E2Fa靶基因中有95%与葡萄糖-TOR激活基因重叠。当阻断葡萄糖-TOR信号时,E2Fa激活靶基因表达被抑制。此外,对TOR和E2Fa进行WesternBlot试验证实转录因子E2Fa是TOR激酶磷酸化的直接底物[17].
所以,葡萄糖-TOR信号对根分生组织的调控机制首先来源于光合葡萄糖,葡萄糖通过糖酵解和线粒体生物能传递,驱动TOR信号传导,快速控制根分生组织代谢转录网络,活化细胞周期,促进根分生组织激活。
在该调控机制中,转录因子E2Fa是TOR激酶磷酸化的底物,其激活细胞周期S期基因,植物根分生组织葡萄糖敏感性的决定因子。这样就形成了一个全新葡萄糖-TOR蛋白激酶-E2Fa转录因子信号通路调控S期基因表达,从而控制细胞分裂并激活根尖分生组织(图2)。【2】
2.2糖与激素作用调控根系生长发育
在植物生长和发育的进程中,糖和植物激素之间存在密切联系。例如,在种苗形成中高浓度的葡萄糖或蔗糖通过提高脱落酸(ABA)水平抑制种苗形成,而乙烯通过降低ABA水平或降低对ABA的敏感性来拮抗ABA,从而拮抗葡萄糖对种苗形成的抑制作用[44].在根生长发育中,糖与生长素、ABA、乙烯以及油菜素内酯(BR)均存在调控作用,尤其调控植物主根生长和根方向性生长。
2.2.1糖与激素作用调控主根生长发育生长素是调控植物根生长发育的重要植物激素,研究发现,葡萄糖通过影响生长素合成、信号及运输促进植物根系生长[19].在葡萄糖促进植物根系生长过程中,葡萄糖能上调生长素合成基因YUCCA、生长素响应因子ARFs和极性运输输出载体PIN1(PIN-FERMED1)表达,并下调生长素受体TIR1表达[19].此外,葡萄糖还能够促进生长素输出载体PIN2积累和空间表达。
ABA与糖共同调控根生长发育中,研究发现ABA不敏感转录因子ABI5参与高浓度葡萄糖抑制根分生组织生长过程。高浓度葡萄糖促进ABI5表达,且ABI5过表达促使根尖分生区缩短,而ABA不敏感突变体abi5-1则对葡萄糖抑制根分生区生长不敏感[18].高浓度葡萄糖抑制根分生区生长还涉及到生长素的极性运输,高浓度葡萄糖抑制PIN1蛋白的积累而缩短根分生组织,而葡萄糖抑制PIN1是通过ABI5来实现。高浓度葡萄糖处理下,abi5-1中PIN1蛋白表达量明显高于野生型中PIN1表达,而在过表达ABI5植株中PIN1蛋白表达水平下降,由此说明ABI5能抑制PIN1积累[18].
所以高浓度葡萄糖调控根尖分生区是通过ABI5抑制PIN1积累,降低根尖生长素水平,进而抑制根分生组织的生长从而抑制主根生长。
植物激素中乙烯、细胞分裂素对植物生长发育具有重要作用,但有关糖与乙烯、细胞分裂素对植物主根生长发育的作用机理并不清楚,仍有待进一步研究。
2.2.2糖与激素作用调控根系的方向性研究表明植物激素中油菜素内酯(BR)、生长素、细胞分裂素和乙烯等对调控植物根系的方向性生长具有重要作用,而糖在调控根方向性生长时与这些激素存在相互联系,且这些激素之间在该过程中也存在上下游的调控。
油菜素内酯(BR)是一种甾醇类植物激素,调控植物多个层面的生长发育过程,在细胞伸长与分裂、维管束分化、叶片形态发生、衰老和抗性中发挥重要调节作用。研究表明,BR信号能够促进葡萄糖对根生长方向的诱导,葡萄糖诱导根生长方向的偏离在BR共同作用下明显增大,且BR不敏感突变体bri1-6在葡萄糖处理下根生长偏离度变小,而BR过度响应突变体bzr1-1D在同样处理下根偏离度加大,说明BR信号在葡萄糖下游调控根的生长方向[20].葡萄糖能够增强BR受体BRI1在根尖细胞从质膜到内含体的内吞作用,不仅增加了细胞内BRI1总量,还增加了BRI1在胞内/质膜比例。葡萄糖增强BR受体BRI1内源化可能是通过影响蛋白磷酸酶活性来实现的,抑制蛋白磷酸酶活性,胞内BRI1总量增加,根的垂向偏离度增大。蛋白磷酸酶PP2A缺陷突变体rcn1-1在BR存在下大大增强葡萄糖介导根偏离,所以RCN1可能是葡萄糖和BR信号的连接子[20].基于前人研究,葡萄糖和BR信号调控根生长方向已取得初步进展,但它们间具体调控机制还待进一步研究。
生长素极性运输影响葡萄糖对根生长方向的诱导,葡萄糖处理下生长素极性运输突变体pin2,aux1-7和mdr1-1均增大根垂向偏离,生长素极性运输抑制剂NPA对野生型拟南芥处理也得到同样效果,说明生长素极性运输抑制葡萄糖对根生长方向的诱导。此外,BR不敏感突变体bri1-6在NPA处理下,根偏离程度反而增大,说明生长素极性运输可能在BR信号下游来控制葡萄糖所诱导的根方向性生长[20].已有研究证实了细胞分裂素对根向地性调控有抑制效应[45],而乙烯通过改变类黄酮合成来抑制根重力响应[46].细胞分裂素受体突变体ahk2、ahk4和B型响应调控突变体arr1、arr10、arr11能够增强葡萄糖诱导根生长方向的偏离,乙烯受体突变体etr1-1和乙烯信号突变体ein2-1、eto2-1也增强葡萄糖对根生长方向的诱导,所以细胞分裂素和乙烯信号对葡萄糖诱导根方向性生长有拮抗作用。
上述植物激素在葡萄糖诱导根方向性生长中还具有上下游调控关系。在葡萄糖存在时BR过度响应突变体bzr1-1D在细胞分裂素BAP(6-苄氨基嘌呤)和乙烯ACC作用下,根生长偏离明显变小,由此表明细胞分裂素和乙烯是在BR信号下游抑制根偏离。而细胞分裂素突变ahk2、ahk4和arr1、arr10、arr11在乙烯ACC作用下根的偏离也明显变小,所以乙烯是在细胞分裂素信号下游调控根的方向性生长。因为生长素极性运输抑制葡萄糖对根生长方向的诱导,而用NPA抑制生长素的极性运输时,乙烯突变体eto2-1根的偏离度增大,这就说明生长素极性运输在乙烯信号下游调控根的方向性生长[47].由此就形成了葡萄糖和植物激素信号共同控制根方向性生长的基本调控网络(图2),但不同植物激素间调控分子机理还不清楚,仍需深入研究。
3展望
目前,糖调控植物根系生长发育研究已取得初步进展,不同糖浓度影响根生长程度不同,葡萄糖-TOR信号激活根尖分生组织和转录网络重编程为糖对根调控机理的深入研究拓展了新思路。但对光合自养型的植物来说,糖调控根是否与光信号存在叠加效应或冗余功能仍是一个亟待解决的难题。此外,糖类型和糖浓度的选取对研究糖信号、糖和植物激素间相互作用增加了难度,且糖信号转导在根部调控网络仍然不清楚。伴随着高通量测序技术的成熟、转基因技术的普及应用、微阵列技术的发展和不同根系突变体材料的获得,这些技术将推动糖调控植物根系生长发育的研究进程。总之,糖作为营养物质和信号分子,解析糖调控植物根系生长发育机理必将推动其他高等植物生长发育的生物学研究。
拓展:影响作物根系生长的三大要素
1、土壤环境与根系的关系
水分对根系的`影响
当土壤水份过干时,易促使根木栓化和发生自疏;过湿能抑制根的呼吸作用,造成停长或腐烂死亡。同时土壤水分过多会挤出土壤氧气,导致根系缺氧死亡,同时影响土壤通气性。
判断土壤水分是否合适,我们可以用小铲子将根系周围的土壤挖开,用手抓取一些土壤在手中捏起,能捏成团且能拍散,则水分合适;如果能捏成团拍不散,则水分超标;如果不能捏成团,则缺水。
酸碱度对根系的影响
土壤偏酸性或偏碱性,都会有不同程度地降低土壤养分的有效性,难以形成良好的土壤结构,严重抑制土壤微生物的活动,同时也可能造成重金属中毒,从而影响各种作物生长发育。
一般作物吸收矿质营养最适ph为5.5-6.5,过酸或过碱都会影响矿质元素的吸收(如下图);而土壤微生物一般最适宜的pH值是6.5-7.5,过酸或过碱都会严重抑制土壤微生物的活动,从而影响氮素及其他养分的转化和供应。
如何判断土壤的酸碱度是否合适?
从土壤颜色进行测定:酸性土壤一般颜色较深,多为黑褐色,而碱性土壤颜色多呈白、黄等浅色。有些盐碱地区,土表经常有一层白粉状的碱性物质。(经验判断,存在误差)
常用:利用仪器来检测,PH试纸或者手持酸碱度仪,若pH值=7,土壤为中性;若pH值<7,则为酸性;若pH值>7,则为碱性。注意:不同作物所适宜的土壤酸碱度不同。
土壤盐度对根系的影响
每一种作物都有其适宜的土壤盐度范围,超出此范围都将会都作物造成一定的影响,以下4张图片就是番茄和辣椒在不同盐度下的长势情况。
2、土壤营养与根系的关系
纯营养成分生根
植物所需的16种必需营养元素当中,氮、磷、钙、锌是影响根系生长最关键的四种元素。
氮素的含量对根系有一定的调控和局部刺激作用,可增加根系的冠幅和干重量。在配合适量的氮肥情况下,可以促进根系生长。
磷可以为根系提供能量,资料显示,在作物生长期中,磷比较集中在富有生命力的幼嫩组织中,如根尖及茎尖生长点,其中根系的含磷量要高于茎叶。当作物缺磷时,会影响到细胞的分裂,蛋白质合成下降,糖分运输受阻,从而使得根系生长细弱。
钙多集中在生长成熟的部位,幼嫩部位含量较少,并且钙在植株体内移动难度较大,一旦缺乏时缺钙的表现首先发生在幼嫩部位,如果实脐部、顶端生长点、茎、根尖生长点等,会导致生长点的分生组织生长渐弱,从而腐烂坏死。
锌在植株体内影响到了生长素的合成。生长素(吲哚乙酸)不仅是能够促进茎尖生长点的生长,更多是促进根尖生长点的生长,研究表明,植物根系中的锌含量要高于地上部分,当锌供应充足时,可在根系中积累。当锌缺乏时,叶片失绿是最明显的表现,其次是叶片变小、节间缩短,植株生长受到抑制。但同时根系生长也会受到严重抑制,从而表现根系长势弱,吸收能力差等,最终导致植株营养不良。
功能性成分生根
目前生根的功能性成分大致有黄腐酸、海藻酸、壳寡糖和维生素B族等。其中黄腐酸类似植物体内源激素,而海藻酸由于内含大量的植物内源激素(生长素、细胞分裂素和赤霉素),均能够促进种子萌发、根系生长;而壳寡糖可以促进植物愈伤组织的形成,活化植物细胞,促进植物生长;此外维生素B族可提高新生组织的抗氧化能力,同时影响植物细胞分裂水平,从而促进生长。
3、土壤微生物与根系的关系
有益微生物(微生物菌剂)在土壤内的生命活动过程中,会产生大量的赤霉素和细胞激素类等物质,这些物质在与植物根系接触后,能调节作物的新陈代谢,刺激作物的生长,从而使作物产生增产效果。此外,微生物还能分解土壤被固定的矿质营养,且能将无效有机质变为有效成分被作物吸收。但以上功能不是一种微生物就能完成的。
比如枯草芽孢杆菌可以增加作物抗逆性、固氮;而巨大芽孢杆菌可以解磷(磷细菌),具有很好的降解土壤中有机磷的功效;胶冻样芽孢杆菌能够解钾,释放出可溶磷钾元素及钙、硫、镁、铁、锌、钼、锰等中微量元素。所以建议大家可以使用复合微生物菌剂。
拓展:根系与地上部生长发育的关系:
一方面垂直根如早期抢先发育导致地上部徒长延迟开花结果;反之,水平根发育良好,形成根网,有助于地上部较顺利地向生殖生长转化。
另一方面,地上部幼龄树枝梢合成的营养物质(尤其是生长素类)首先满足了垂直根的需要,促使其迅速向深土层推进,形成早期发育优势,相对抑制了水平根系的发育,直至垂直根受深土层不良条件限制,加以地上部分枝级数递增,树冠迅速向四周扩展,水平根系相应逐步发育,进入生长高峰形成根网。当幼龄树地上部代谢产物下行运输受阻,或因各种原因地上部急剧衰退时,首先受害较重的是水平根系,然后才是垂直根。成年树在地上部下行运输受阻的情况下,受威胁较快而重的是垂直根系。 在发育早期,垂直根系自然分枝能力较低,即使在人为干预下(如切断、培肥等)也改变不大,同时所发新根又多为生长根,较少萌发吸收根。水平根系则相反,表现有较强的分枝性,也较易诱发吸收根。发育后期,差别更为明显。垂直根再发能力大大下降,水平根在人为干预下,只要地上部生长正常,是具有不断分枝能力的。
水平根系以表土下30厘米为界,进一步划分为面层根及深层根,这一划分反映了柑桔根群对旱、涝、冷、热季节的适应性。春季多雨季节,表土30厘米内土层为根系活跃层;高温、秋冬旱、冷季节,根系活跃层则转移至30厘米以下的深土层。
在指出垂直根与水平根本质区别的同时,还应看到其可塑性的一面。如幼龄树生长前期,在大穴大壕沟深翻改土情况下,水平根系可向垂直根系方面转化,反之,垂直根系在一定程度上(主要是根系的幼龄发育阶段)也能逐步向水平根方面转化。这种互相转化在根群控制和培育上有很大利用价值,也为根群的培育措施提出了依据。
但是,必须指出,这一转化在两类根系上的表现是不一样的。水平根有较大可塑性,垂直根则反之 ,甚至有较强的顽固性。然而垂直根的顽固性并不是不可改变的。曾将一些半年生橙树的垂直根系挖出,自身成束打成一个大结,半年内虽然仍会萌发大量纤细的垂直根群向下继续伸展,可是一年后已见水平根网迅速形成,一年半后则迅速增粗。此时打结后所发垂直根群已收缩不发育。从生理上来看,尽管垂直根并未直接转化为水平根,但整个根群的生理特点已向水平根方面转化。
【糖对根系生长发育的影响与调控机制】相关文章:
对影响农作物根系冗余影响因子探讨10-04
生长素对花发育过程的调控机制08-20
不同灌水处理对烤烟生长发育的影响研究09-10
房地产调控对房地产估价行业的影响08-18
对外贸易对就业的影响机制分析论文08-01
茉莉素调控植物生长发育的研究成果综述08-20
风险投资对创业公司影响机制研究论文09-08