- 相关推荐
模糊数学理论在图像处理中的应用分析
近年来,模糊数学理论在机械、化工、生物、医学以及计算机领域得到了快速的发展,以下是小编搜集整理的一篇探究模糊数学理论应用的论文范文,欢迎阅读参考。
摘要:模糊数学理论诞生于1965年,近年来有关该理论的研究数量和研究质量一再提高,模糊数学在实际应用领域获得了较快的发展。模糊数学的研究包括了统计数学和经典数学的关系、模糊语言和模糊控制的研究以及模糊数学在社会学科和自然学科中的广泛应用。本文对模糊数学理论进行了简单的了解,并对模糊数学在图像处理中的应用进行分析。
关键词:模糊数学理论;图像处理;计算机;应用
模糊数学理论于1965年提出,它是对模糊性现象进行研究和处理的方法和理论,模糊数学理论的基本概念是模糊集合。近年来,关于模糊数学理论的研究进一步加深,模糊技术在众多领域得到了应用。计算机图像处理技术是借用计算机的识别和运算功能来进行图像的处理,在图像处理的过程中也会用到模糊数学理论,简化图像处理和调整的方法,提高图像处理的准确度和精确度。
1模糊数学理论概述
在日常生活中,我们经常会用到高个、胖子、年轻、漂亮热、善、好等形容词,这些词语只是对事物的大致描述,边界比较模糊,在范围上不能进行明确的界定,这就和模糊数学理论相关。模糊数学理论就是对模糊性现象进行分析和研究的方法和理论,该理论要重点把握模糊数学和随机数学以及精确数学之间的关系,对模糊性现象进行界定。因此,不仅生活中的模糊性现象比较多,工作中还会有许多模糊的问题,比如在确定水是否烧开的时候要对水的状态和温度进行确定,但是由于模糊性,水的温度和状态都不能进行明确的界定,需要运用模糊数学理论来分析和解决问题。近年来,模糊数学理论在模糊识别与控制、模糊评判、系统理论、医学、信息检索以及生物学方面都得到了广泛的应用,而计算机领域是模糊数学的重点研究领域。模糊数学理论可以解决计算机过于精确化的问题,帮助计算机对模糊信息进行敏捷和灵活的处理。
2模糊数学理论在图像处理中的应用分析
图像处理是利用计算机来进行图像的编码、图像数字化、图像分割、图像增强、图像分析和图像复原,虽然图像处理可以通过模拟技术和光学方法实现,但是图像数字处理技术具有方便性和灵活性,数字图像处理技术得到了重要的应用。在用计算机进行图像处理的过程中,要对图像的清晰度、对比度和图像颜色进行处理,对图像的蓝、黄、红三大基色进行模糊的调动和处理,提高图像处理的质量。
模糊数学理论对图像融合的作用。图像融合是提取有利信息来进行高质量图像的综合,提高原始图像的光谱分辨率和空间分辨率,提高计算机对原始图像信息的利用。传统的计算机图像融合方法是对两张图像的简单重叠,图像融合的准确性较低,模糊数学理论在图像处理中的应用就可以避免图像融合准确性较低的问题,图像经过处理之后的偏差率比较小。在图像融合的过程中,图像像素值会有一定程度的灰度值,图像的变化主要是由这些灰度值来决定的,如果灰度值达到了一定的程度,图像的性质就会发生变化。通过对灰度值和图像的关系分析可以发现,灰度值的变化影响着图像的变化以及图像效果的变化。因此,在利用计算机对图像融合处理的过程中,可以利用模糊理论,对灰度值与图像变化之间的关系进行进行快速的推断。计算机的运算能力和图像处理能力是非常强大的,通过对模糊数学理论的应用可以较快速的得到图像变化的范围和结果,实现图像融合的最佳效果。
模糊数学理论对图像调整的作用。图像调整一般都是对图像颜色的调整,通过不同的颜色来实现不同的视觉效果和应用效果,图像颜色调整可以通过对比度的调整来实现。图像效果有现代、古典、哥伦风、经典影楼以及其他效果,在利用计算机进行图像调整的过程中需要对图像颜色值进行调整,实现图像调整的最佳效果。但是在图像处理的过程中会有一些较为特殊的图像处理,在灰度值较大的图像调整和处理中,要首先对图像的灰度边缘进行调整,增加图像的灰度值,通过对比来进行图像效果的分析。如果图像的灰度值确定,可以通过灰度值的计算来掌握最大灰度值的计算,实现图像的对比调整。模糊数学在图像调整的过程中就是对对象对比度和图像颜色值的调整,由于图像处理效果没有明确的界定,处理人员可以通过模糊的调整来实现不同的图像处理效果。
模糊数学理论在其他图像处理中的应用。除了图像融合和图像调整,图像融合还包括了图像数字化、图像编码、图像分割和图像增强等,模糊数学理论在这些图像处理中的效果也是非常明显的。图像增强是指使图像变得更为清晰,使图像满足人们使用和计算机的要求。图像增强包括了边缘锐化、伪彩色处理和干扰抑制等,图像增强不需要保持原图像的色彩和强度,因此图像处理人员可以采用模糊数学理论来进行图像的增强。而图像分析是指对图像的数据信息以及度量进行抽取,得到图像的数值结果,对图像内容进行相关的描述,实现对图像信息的深度把握,图像分析只是对图像数值的简单抽取,处理人员可以利用模糊数学理论来解决图像分析和图像分割过程中的各种模糊问题,实现较好的图像处理效果,实现图像的增强和复合,解决图像处理中各种模糊问题。
3结论
模糊数学理论于上世纪的60年代提出,近年来在机械、化工、生物、医学以及计算机领域得到了快速的发展,解决了各种模糊性的难题。图像处理包括了图像数字化、图像分割、图像融合、图像增强以及图像分析,模糊数学理论可以对图像灰度值的变化范围进行分析和把握,解决灰度值变化和图像色彩变化之间的关系问题,通过采取合适的灰度值来实现较好的图像处理效果。因此,模糊数学理论可以有效的解决生活和工作中的各种模糊难题,实现问题的最佳解决。
参考文献
[1]郭川军.计算机指纹识别技术研究[J].中国科技信息,2011(5).
[2]赵永强,潘泉,张洪才.一种新的全色图像与光谱图像融合方法研究[J].光子学报,2010(1).
[3]冯苍旭,史云,陈实.图像处理技术在地质灾害监测中的应用[J].中国地质灾害与防治学报,2009(2).
[4]宋江山,徐建强,司书春.改进的曲波变换图像融合方法[J].中国光学与应用光学,2009(2).