- 相关推荐
初中数学建模论文大全
数学建模,即建立数学模型,是基于建构主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维.以下是小编带来的相关内容,希望对你有帮助。
初中数学建模论文 例1
摘要:数学建模作为一种学习竞赛活动,最早源于美国教学领域,其参与主体主要为大学生群体。在数学建模传入我国数学教学领域后,数学建模的学生参与对象扩展到中学生和初中生。而近年出现的初中数学建模,更多的是以一种初中数学教学的策略方法存在,对其教学策略进行探究,有助于初中数学建模教学的顺利推进。
关键词:初中数学;“数学建模”;教学
一、初中学建模”的意义
初中建模是指学生在教师预设的与学习课本知识有关的生活情境中,通过一定的数学活动建立数学模型、解释数学模型和应用数学模型,并以此为载体学习初中数学相关知识。数学建模大多是在大学生数学学习过程中被提及,而其目的是将所学的数学知识合理的应用到实际的生活中,具有较强的应用性及实践性,与此不同的是,初中数学教学中强调数学建模则是为了让学生学习并掌握新的知识,提高学生能力,形成新思想并体验教学活动等。初中数学建模其包含的知识结构较为基础、相对简单,作为一种教学策略,通常由教师事先设计好再开展教学活动,需要由教师进行直接参与。可见,初中数学建模已成为一种数学教学的教学模式。初中数学模型教学过程的本质是让学生参与到数学探索和实践的活动中,让学生主动参与到数学学习的整个过程中,积极探索、获取新知识,这一教学模式转变了以往枯燥乏味的数学学习模式,从单纯记忆、模仿以及训练的数学学习方式转变为学生进行自主探索、实践创新的过程。对于学生来说,不仅让学生学习到数学知识,还能体会到数学的乐趣,激发学习兴趣,树立学习信心,强化了学生主动参与到数学学习中的热情及主动性。可见,开展初中数学建模教学模式不仅是教育方式上的改革,更能提高学生的自主意识、探究能力,发展学生的综合实践能力及创新能力,推动初中数学教育的发展及改革。
二、“数学建模”教学方法在初中数学教学中的运用流程
在初中数学教学过程中对数学建模教学方法的运用主要包括:模型准备,模型假设、模型建构以及模型应用与检验四个方面的内容。
1.模型准备
数学建模的实现有赖于对一定现实情境的分析。初中数学教学中数学建模所面对的现实情境问题,往往是教师根据教学需要精心设计出来的预设问题。教师通过将学生的生活和数学教学的实际需要进行有机的结合,创设出符合学生实际的生活情境,为初中数学教学中数学模型的建构提供丰富的生活体验,让学生更容易借助固有的经验体会到其中隐含的数学问题。数学建模是一个由具体现象到抽象概括的建构过程。
2.模型假设
数学建模的过程主要是根据实际问题的特征和建模的目的,对现实问题进行必要的简化过程,通过精确的数学语言把实际问题描述出来,从而实现从实际问题到为数学问题的转化过程。用精确的语言提出合理假设,是数学模型成立的前提条件,也是数学建模最关键的一步。由于初中生的身心发展特点导致其本身认知能力存在一定的缺陷,加上初中数学建模自身的特殊性,在初中数学教学过程中,教师要注意学生对问题情境的解读是循序渐进的,教师更多的参与、引导和整合能够帮助学生更好地学习和掌握对数学建模的运用。
3.模型建构
对数学模型的建构要充分考虑初中生的接受和认知能力,要立足学生的角度,让学生亲身经历建构数学模型的过程,这样才能让学生更好地掌握和运用数学建模。教师在教学过程中应该鼓励学生采用多样化的探究策略,根据自身的知识水平和实践能力选择不同问题解决的方式,帮助学生自主构建数学模型。
数学模型是用数学解决实际问题时使用的一种方法,它往往是一组具体的数学关系式或一套具体的算法流程,它是一种数学的思考方法,同时也是逻辑思维的思考方式,构建数学模型是数学建模的.关键。对数学模型的建构和运用的核心目标是实现对学生数学逻辑思维方式的培养,提升学生的数学思维和实际解决问题的能力,因此对数学模型的建构一定要立足实践,让理论与实践相融合,既适应学生的认知能力发展水平又充分满足教学目标的需要。
4.模型运用与检验
在数学教学中对数学建模的运用,其目的是更好的解决现实问题。因此,数学模型最终还是要回归对实际问题的运用与解决。只有在对实际问题解决的过程中,才能使数学模型具有生命力,实现自身的价值,对初中数学的发展发挥应有的作用。对数学建模的结果检验包括检验和应用两部分,对数学模型的每一次应用都是对模型的一次检验。在初中数学建模中,受初中生知识水平和认知能力的限制,对数学建模检验的重点只能放在模型的应用方面。数学是一门应用性非常强的基础科学,只有在不断的实践应用中才能获取数学知识的精髓,数学模型可以在很大程度上帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,全面提升学生的综合素质。同时,初中数学建模流程并不是一成不变的,它要根据教学内容、教学对象、教学进度等实际状况,进行灵活选择。
三、如何将“数学建模”教学方法应用到教学实践中
1.全面有针对性地选取适宜的教学内容
初中数学建模教学方法经过教学实践的检验对有效开展数学教学有重要的教学意义,但是初中阶段数学教学内容中不是所有内容都适宜运用“数学建模”教学方法开展教学。所以,初中数学教师要注意对教学内容进行筛选,选取针对性较强且适宜运用该教学方法的数学内容开展教学,使教学可以达到事半功倍的效果。例如轴对称图形的移动教学则较适宜运用“数学建模”教学方法开展教学,教师可以将不同的二维图形呈现给学生,以一条直线为对称中线将其进行旋转、翻折使其产生“轴对称”的效果,同时教师运用字母或数字的形式标记翻折前与翻折后图形的对应点,使学生通过教师的演示在头脑中建立与之相关的图形翻折过程,形成数学思维建模,提升数学课堂教学质量水平。
2.教学环节设计要注意科学性、合理化
教学环节的设计科学性和合理化是运用“数学建模”教学方法开展数学教学成功与否的重要影响因素之一。比如动画片中的皇宫建筑蕴含着不同“角”的构成,并带领学生将“直角、钝角、锐角”概念与不同形状的图形相结合并运用到实际数学设计中,设计出自己的城堡,调动学生学习复杂数学内容的主动性,培养学生应用数学的能力,进而提升数学教学效果和水平。
在我国当下的初中数学教学中,“数学建模”这一教学模式可以很好地实现教学目标,并有效的提高数学教学效果,在培养学生的数学思维能力方面,也有一定的促进作用。如果该模式能够在初中数学部分教学内容中得到拓展和应用,将有利于初中数学教师教学水平的提高。
参考文献:
[1]陈修臻.数学建模思想在初中数学教学中的应用研究[D].山东师范大学,2015.
[2]张钦.基于建模思想的初中数学教学设计研究[D].淮北师范大学,2015.
初中数学建模论文 例2
【摘要】 数学建模是人类在探索自然和社会的运作机理中所运用的最有效的方法,也是数学应用于科学技术与社会的最基本的途径. 相对来说,在初中数学中建模,需要根据客观上的学生需求,结合教师的实际教学水平,实现一个有效建模. 本文主要对初中数学建模思想进行解析.
【关键词】 初中;数学;建模;思想
数学建模,即建立数学模型,是基于建构主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维. 初中数学建模思想需要从多个角度出发,例如实际教学情况、学生的学习方式和思维方式的发展、教学框架的改变等.
一、对数学建模的认识
就当下的情况来分析,如果想要应用数学知识去更好地解决实际问题,经常需要在数学理论和实际问题之间构建一个桥梁来加以沟通,便于把实际问题中的数学结构明确表示出来,这个桥梁就是数学模型. 本研究根据数学建模上的要求,通过以下步骤来实现数学建模:
从上图可以看到,初中数学建模,首先需要将现实问题抽象化,一般来说,可以通过函数或者是方程的形式,建立一个切合实际的数学模型,通过这种方式,降低现实问题的解决难度. 其次,必须根据已经建立的数学模型,作出合理的数学解释. 比方说,方程和函数的解决方法不同,最后得到的结果也不同. 第三,要对数学结果进行翻译和检验,观察数学结果是否符合实际问题的需求. 如果是负数,即便符合数学本身的要求,但是不符合现实问题,此结果必须舍弃. 第四,将得到的数学结果代入现实问题中进行解决,看看是否存在合理的解释. 整个过程在理论上比较复杂,但在实际应用时,可以在短时间内解决问题,甚至改变问题的方向,寻找到更好的解决方案.
二、初中数学建模思想解析
(一)方程(组)模型
在模型建立当中,方程组模型是一个比较常见的模型.例如:第一季度生产甲、乙两种机械设备,总共生产485台设备,通过技术上的改进,该公司计划在第二季度生产两种机械设备558台. 经过统计,甲种机械设备相对于第一季度,增产了15%;乙种机械设备相对于第一季度,增产22%. 请问该公司在第一季度生产甲、乙两种机械设备各多少台?这种类型题与现实生活的贴近程度较高,并且与学生的接触面很大,在建模过程中,完全可以根据学生的思维和教师的教学水平进行更好的发挥.
(二)点 评
对于现实生活而言,现阶段广泛存在增长率、打折销售等问题,这些问题的相同点在于含有等量关系,可以通过构建方程组模型来解决. 初中数学的优点是,总体上的深度不是很难理解,学生在学习数学建模思想时,可以尝试通过以下方法来学习:首先,将教师讲述的案例进行转化,上述的机械生产案例也许不是学生常见的,学生可以将“机械生产”改变为其他的东西,例如纺织生产、零件生产,只要符合主观上的意愿即可;其次,设计出合理的数学建模,方程组仅仅是其中的一种,教师不应该强求学生一定要通过方程组的方式来进行数学建模,还可以通过函数、不等式组等其他方式来解决问题,帮助学生的思维更加灵活,为解决问题提供一个更加广阔的基础;第三,数学建模的具体解决过程,需要通过详细的计算来实现,一般情况下会得到两种结果,有时是一正一负,有时是两个负数,有时是两个正数. 得到具体的结果后,要根据问题的实际情况代入解答,这样才算是完成了整个数学建模的建立和解答.
三、其他类型的数学建模
从客观的角度来说,数学科目的奇妙之处在于,将实际问题抽象化之后,解题方法就变得更加宽泛,除了上述的方程组之外,还可以通过其他类型的数学建模来解决. 例如不等式组. 从教学经验上来分析,不等式组比较适合在市场经营、核定价格、分析盈亏等问题的解答中应用. 这些问题并没有一个特别确切的答案,往往会根据实际发展情况来进行解答,不等式组可以缩小范围,将问题的'答案更加细致化,避免单纯数值带来的问题不确切、答案不清晰、解决问题不彻底等现象. 还有,函数模型也是数学建模思想的重要组成部分. 初中数学的要点在于,掌握各种数学知识的基础部分,函数模型符合初中学生的学习心理,可以让学生去钻研和探索. 从理论上来说,函数揭示了现实世界数量关系和运动、变化规律,适合解决成本最低、利润最大等问题. 函数在运用的过程中,能够更加准确地找到“最高点”和“最低点”,便于问题的精确解答,在代入实际问题时,基本上不需要再一次检验,可以直接得出最优结果.
本文就初中数学建模思想进行了讨论和研究,就当下的情况而言,初中数学建模的确取得了一定的积极成就,教师的教学水平和学生的思维框架都得到了提升. 在今后的相关教学工作中,初中数学建模思想还需要进一步提升. 首先,建模思想要趋向于多元化;其次,建模方式要形成独特的方案和思路;第三,初中数学建模思想必须具备长效机制,不是一次用完就结束了. 相信在日后的努力当中,初中数学建模思想可以获得更大的发展,并且对学生、教师都产生较大的积极意义.
【参考文献】
[1]奚秀琴.建模思想在初中数学教学中的应用[J].数学学习与研究,2010(6).
[2]翟爱国.2009年中考应用问题中的模型构建[J].中国数学教育,2010(Z2).
[3]王允.初中数学应用题教学的研究[J].科学之友,2010(14).
初中数学建模论文 例3
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的`应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
二、数学应用题如何建模
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
1提高分析、理解、阅读能力。
2强化将文字语言叙述转译成数学符号语言的能力。
3增强选择数学模型的能力。
4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
【初中数学建模论文】相关文章:
数学建模论文07-06
专科数学建模论文09-14
数学建模论文范本10-22
数学建模论文模板07-03
数学建模论文模板07-22
数学建模的理念及建模论文结构解析06-10
数学建模论文格式07-29
数学建模论文写作指导10-02
数学建模的论文格式10-15