建模思想数学教学论文
篇一:建模思想数学教学论文
一、高数教学里的量化指标与线性关系
要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;其次,要分析出各个参数之间的线性关系;然后,才能建立模型的计算公式,并进行测算、校验及修正。
在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。
经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的目的所在。
二、分析数学建模中的相关参数
我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:
(1)学生的上课签到情况;
(2)课堂问答的情况;
(3)作业的情况;
(4)测验的成绩。
这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:
1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。
2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。
所谓纵向对比,就是这一期学生,在学习高数的过程中,各阶段的课堂提问情况。横向对比,则是与前几期学生,以及同期别的班的`学生相比,这一班学生的课堂问答情况。当然,也有可能出现学生不积极提问,同时教学难度也不大的情况。这时候就要用到下一个关键参数——测验。
3.测验的成绩。课堂问答相当于抽检,而测验则是一次小规模的普查。测验的结果可以较为真实的反映出学生的学习成果。不过,测验不可能频繁的进行。因为课时安排主要还是以授课为主。过多的测试,有可能导致本末倒置。
4.作业的情况。除了测试之外,一个比较好的检测学生学习状况的方法,就是作业。大学的作业,由于教学安排的原因,不像中小学作业那样密集。同时,教授的主要工作也不是批改作业。但抽查作业的完成情况,仍然可以对了解学生的学习情况起到一些辅助作用。
三、建立数学模型
分析了数学建模的相关参数,我们就要着手进行数学建模。尽管模型中的几项参数,与考试成绩之间都是乘数关系,但是各项参数之间并不是简单的乘数关系,而是相互有一个比例。所以,在建立模型时,我们采用将参数域对象相乘,然后相加,取和,然后在分析与考试成绩之间的线性关系。
我们设立这样一个方程式:
上课签到情况×参数值A×权重值1+课堂问答情况×参数值B×权重值2+作业情况×参数值C×权重值3+测验情况×参数值D×权重值4=考试成绩。
然后,实际成绩进行比对。
在这个过程中,调整参数对象的值,以及四个权重值,推算出接近于考试成绩的公式,这样就可以建立起一个初步的数学模型。
四、对数学模型进行应用和修正
建立了数学模型后,还需要根据实际的教学情况,进行修正,是数学模型与真实情况相接近,从而对教学工作有真正的应用价值。
当数学模型经过修正逐渐完善后,根据各项教学指标,就可以有预见性地调整教学工作。比如,课堂提问数量的上升,作业的情况良好,则教学情况有可能是在向好的方向发展。反之,就可及时进行调整。比如,增加与学生的交流,看是哪些地方还不尽理解,或者有些什么别的因素在影响,及早排查,从而确保期末考试成绩不出现大的波动,影响教学质量。
通过在高等数学教学中,融入数学建模的思想,我们可以发现,以往那些不太理解的量化指标,确实是与教学质量之间有着必然联系的。通过数学建模,我们不仅促进了对科学化的教学方式的理解,也对数学建模这一工具方法本身,有了更多更深刻的了解。
篇二:建模思想数学教学论文
一、高职数学教学现状
最近几年,以“工学结合”为行动指导的教学思想应用在高职领域,这个高职教育带来了福音,并且在不同的专业上都获得了不错的成功。但是高职数学作为专业基础的科目的发展却是不尽人意,虽然也有改革,但是都没达到理想的效果。本文就此从以下三方面分析了高职数学教学的现状:
1学生成绩参差不齐
高职各专业学生的来源大致有以下几种:普通高中学生,职业高中学生,中专学生。他们的数学基础普遍较差,学习积极性普遍不高,学生来源的多元化导致高职学生的入学成绩总体水平都不高亦或出现层次不齐的现象,这在数学学科上表现的更加突出。现如今,从整个教育背景来看,应试教育仍占主角,这就使得学生缺乏对数学学习的动力及兴趣。曾有人就学生的学习兴趣、态度及看法做了一次问卷调查,从调查结果显示:认为高职数学不重要占38.3%;“不喜欢”、“讨厌”占47.5%;“难听懂”占31.7%;“不必看书”占25.2%;“用数学软件计算数学有兴趣”占49.7%从这个调查中可以看出,学生对于应试教育的数学存在反感,而将计算机应用到数学教学中很感兴趣,另外在调查中学生出现的这些态度及想法是进行高职数学教学改革所必须面对和改革的。
2教学内容枯燥乏味
长期期以来,高职高等数学教程就是本科教材的袖珍版,教材过分注重知识的系统性,完整性,内容显得抽象,深奥和学生所学专业脱节,教材中大部分内容是本科版的压缩,算数学的多,用数学的少,而且老师的讲解也是枯燥乏味的,这就使得学生对于学习数学失去了原本的兴趣,以微积分为例:老师一般按照函数、极限、连续、导数、微分、、微分方程、定积分、定积分的应用、不定积分这一教学顺序来完成教学目标,通过这样的讲学,不仅节约了时间,还使得教学的过程易于控制,但是由于其全部都是理论知识使得高职学生对数学的学习失去了兴趣,缺乏学习数学的动力,使得学生的主观能动性都被禁锢了,这对提高学生的创新能力创新精神很不利。
3教学方法单一、无新意
由于数学基础及能力相对较差,他们无论在学习能力、学习方法还是学习习惯方面都或多或少存在着问题。接受知识慢,对数学的学习兴趣不高,学生不会学习,被动学习占多数。
而在高职教学中仍然践行“教师讲,学生学”的教学方法,主要以传授知识为主,并不重视知识的应用和学生学习能力的培养,使得师生之间互动较少,出现一种被动学习的现象,在高职教学中,数学教学所扮演的是在完成一个“教学任务”,并将“学数学”和“用数学”分开来,使得学生对于数学就只停留在无意义的做题和考试中。
二、数学建模融入高职数学教学的探究
高等数学是高职院校各专业开设的一门基础课程,同时也是对学生的数学思想、数学素质进行综合培养的重要课程。它不仅为学生后续课程的学习和解决实际问题提供数学知识和数学方法,而且也为培养学生的思维能力、分析和解决问题的能力提供了必要的条件;将数学建模融入到高职数学教学中是高职教学改革的必然选择,也是提高高职教学质量的重要方法,本文从以下三个方面主要论述将数学建模融入到高职数学教学方法中:
1融入到数学原理的学习内容中
数学的教学中,学生学习了无数的定义、定理及公示,可是却不清楚为什么要学,学习它有何意义,有什么用。因此在讲述新的数学知识时先讲述所学知识的历史渊源还是很有必要的,例如在讲述微积分时,可先讲述微积分的发展史,讲述当时科学家所面临的什么样的问题——精密科学需要研究变量的数学,在这之前的数学研究的领域都是固定的有限的,而在这之后数学包含了变化,运动等等,所以微积分可以说是数学史上的分水岭。
在数学教学中,老师应尽可能地了解数学原理产生的背景,与学生一起探讨新的数学思想萌芽的过程,在这过程中,使学生认识到数学原理的发展过程是经过曲折而又漫长的过程,这对学生的数学学习有很大的作用。
2融入到数学习题的中
在高职数学的教学过程中,应该注意习题课作用的发挥,高职数学习题课是高职数学教学的一个重要组成部分,也是课堂教学的进一步深化,它不仅有助于学生理解和消化课堂所学的知识而且对于发展数学思维的训练也起到不可或缺的作用。从学生接触数学这门课程开始,做习题一直是学习数学、提高数学成绩的有效手段,甚至在数学中还存在“学数学的最好方式是做数学。”然而目前在高职数学教材的习题中涉及数学应用的问题较少,即使存在,也是一些拥有具体答案的问题,这对提高学生的创新能力很不利。所以为了为了弥补这一缺陷,老师在设置数学问题是尽量选些实际应用的题目,来做建模示例。另外,根据学生的自身情况,可以设置一些具有实际性、趣味性及开放性的习题,这样可以拓展学生的思维空间。
对于传统的“老师教,学生学”,在这里可以采用“学生教,老师和学生一起学”,通过让学生当“老师”,这样可以充分发挥学生的积极性,此外让学生感觉上数学课是一种享受的过程
3融入到数学考核中
传统的考试形式单一,学生和老师准备的单一枯燥,而且内容具有片面性,不能将学生和老师的积极性和创造性体现出来,尤其是学生。现如今更多地提倡“创新教学”,因此,闭卷考试再也不作为评定成绩的唯一方法,对于考试的评定应能充分体现学生多方面的能力。例如可将试题可以分成两个部分:一部分是基础知识,应在规定时间内完成;而另一部分则是一些较为实用性的开放性试题。通过这两部分的试题不仅能考查学生理论的综合知识能力,还能在开放性试题中挖掘学生的潜力。
三、结束语
总而言之,把数学建模的思想方法融入到高职数学教学中是创新时代对人才培养的要求,是社会发展的必然结果,这是必要的,也是可行的。通过实践,数学建模思想的应用更有利于学生学习和掌握高职数学的基本知识,激发学生对数学的学习兴趣,而且进一步培养了学生的创新意识和创新能力。另外在当今的理工大学中数学的应用意识和数学建模能力已成为其大学生的基本素质,随着数学建模对高职数学教学的意义逐渐深入研究,可以看出数学建模思想在提高职高的学生数学素质起到了一定的推动作用。
【建模思想数学教学论文】相关文章:
9.数学建模论文格式