数学建模论文优选(15篇)
在日常学习和工作中,大家都不可避免地要接触到论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是小编为大家收集的数学建模论文,仅供参考,欢迎大家阅读。
数学建模论文1
【摘要】提出数学建模的基本概念,通过考查独立院校大学生数学建模竞赛发展状况,针对独立学院人才培养目标以及学生的特点,从多个方面阐述独立院校大学生数学建模教育存在的突出问题,在此基础上,提出了独立大学数学建模教学改革策略和方法。
【关键词】独立院校;数学建模;改革
一、数学建模的基本概念
数学是在实际应用的需求中产生的,要描述一个实际现象可以有很多种方式,为了实际问题描述的更具逻辑性、科学性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。数学建模则是架于数学理论和实际问题之间的桥梁,数学模型是对于现实生活中的特定对象,根据其内在的规律,做出一些必要的假设,为了一个特定目的,运用数学工具,得到的一个数学结构,用来解释现实现象,预测未来状况。因此,数学建模就是用数学语言描述实际现象的过程。
二、独立院校数学建模课程现状
大部分的独立院校的数学建模工作纯在一定的问题,主要体现在以下几个方面:(一)学生方面的问题。独立院校的大部分学生的数学功底差,对数学的学习兴趣不大,普遍认为数学的学习对自身的专业的帮助不大。从而更不愿意接触与数学有关的数学建模,对数学建模竞赛的兴趣不大。在独立院校中,参加数学建模竞赛的大都是低年级的学生,而这些学生的数学知识结构还不完整,他们往往参加了一届数学竞赛并未获得奖项后就不愿意再次参加。而高年级的同学忙于其他的就业、考研等压力,无暇参加数学建模竞赛的培训。(二)教资方面的问题。首先。传统的教学是知识为中心、以教师的讲解为中心。数学建模的教学要求教师以学生为中心,培养学生学会学习的能力,发展学生的创新能力和创造能力。独立院校外聘的老师常常对独立院校的学生不够了解,这直接影响到教学成果。其次,数学建模涉及的知识面广,不但包括数学的各个分支,还包含了其他背景的专业知识。独立院校的教师一部分是才从大学毕业不久的研究生,他们对于数学建模教学和竞赛的培训经验不足,科研能力不是很强,对数学的各个分支的把控能力不强,对其他专业的了解不够全面。(三)教学实施方面的问题。大学生数学建模竞赛的目的决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。独立院校数学建模教学存在很多的问题。首先,大学数学建模教育在独立院校中的普及性不够。数学建模的宣传力度不大,课程大多开在大一和大二的跨选课,这个时候学生的数学知识结构还不完整。其次就是教材的选取,数学建模的相关教材大都是为了数学建模竞赛而编写的,对于独立院校的学生来说,这些教材的难度系数大,涉及的知识面广,远远超过了学生的接受能力。
三、改革的具体措施
(一)让学生了解数学建模,培养学习数学建模的兴趣。数学建模课程的开设有利于培养学生运用数学具体解决实际问题的能力,让学生发现学习数学的'用处,改变学生学习数学的态度,提高学习数学的能力,认识到数学的意义和价值。独立院校学生的数学基础虽然比较差,但是学生的动手能力强。学校可以在多开展数学建模的讲座和课程,让学生了解数学建模。同时多向学生宣传数学建模的成果。(二)在教学内容中渗透数学建模思想和方法。1.在日常数学教学中渗透数学建模的思想方法。传统的数学教学重视的是知识的培养和传输,而忽视的是实际应用能力。教师的教学目标是使学生掌握数学理论知识。一般的教学方法是:教师引入相关的的基本概念,证明定理,推导公式,列举例题,学生记住公式,套用公式,掌握解题方法与技巧。学生往往学习了不少的纯粹的数学理论知识,却不知道如何应用到实际问题中。数学建模课程与传统数学课程相比差别较大,学校开设的数学建模跨选课及数学建模培训班,对培养学生观察能力、分析能力、想象力、逻辑能力、解决实际问题的能力起到了很好的作用。由于学校开设的数学建模课程大多是选修课程,课时较少,参选的学生也有限,数学建模的作用不能很好的向学生传输。高等数学中的很多内容都与数学建模的思想有关,因此,在大学数学课程的教学过程中,教师应有意识地结合传统的数学课程的特点,将数学建模的思想和内容融入到数学课堂教学中。这样既可以激发学生的学习兴趣,又能很好的将突出数学建模的思想。2.数学建模与专业紧密联系,发挥数学对专业知识的服务作用。数学建模与专业知识的结合,不仅可以让学生认识到数学的重要作用,在专业知识学习中的地位,还可以培养学习数学知识的兴趣,增强数学学习的凝聚力,同时加深对专业知识的理解。通过专业知识作为背景,学生更愿意尝试问题的研究。在学习中遇到的专业问题也可以尝试用数学建模的思想进行解决。这有利于提高学生的综合能力的培养。3.分层次进行数学建模教育。大体说来独立院校的数学建模课程的开设应该分成两个阶段:(1)第一阶段:大学一年级,在这个阶段,大部分学生对数学建模没有了解,这时候适合开设一些数学建模的讲座和活动,让学生了解数学建模。同时,在日常的数学教学中选择简单的应用问题和改变后的数学建模题目,结合自身的专业知识进行讲解,让学生了解数学建模的一般含义。基本方法和步骤,让学生具备初步的建模能力。(2)中级层次:大学二、三年级。在这个阶段,学生基本具备了完整的数学结构,具有了基本的建模能力。这个时候应该开设数学建模专业课程,让学生处理比较复杂的数学建模问题,让学生自己去采集有用的信息,学会提出模型的假设,对数据和信息需进行整理、分析和判断,并模型进行分析和评价,最终完成科技论文。
四、加强教学组织与学校管理
(一)提高数学教师自身水平。在数学建模教学过程中,教师扮演着重要的角色。教师水平的高低决定着数学建模教学能否达到预期的目的。数学建模的教学,不仅要求教师具备较高的专业水平,还要求教师具备解决实际问题的能力和丰富的数学建模实践经验。而独立院校的教师部分教师是才毕业不久的研究生,缺乏实践经验。这就对独立院校的的数学建模教学工作产生了很大的障碍。为了提高教师的水平,可以多派青年教师进行专业培训学习和学术交流,参加各种学术会议、到名校去做访问学者等等。同时可以多请著名的数学专家教授来到校园做建模学术报告,使师生拓宽视野,增长知识,了解建模的新趋势、新动态。青年教师还需要依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划、实施和调整以及反思和总结。青年数学教师还必须更新教育理念,改变传统的教学理念。只有不断创新,努力提高自身素质,才能适应新的形势,符合建模发展的要求。(二)选取合适的教材。数学建模教材使用也存在诸多不足之处。绝大部分高校教学建模课程采用的是理工类专业数学建模教材。这些教材主要涵盖的数学模型的难度系数大。而独立院校的学生的基础薄弱,无法接收这些模型。在教学过程中,教师可以将具体的案例或是历年的数学建模题目做为教学内容。通过具体的建模实例,讲解建模的思想和方法。一边讲解,一边让学生分组讨论,提出对问题的新的理解和对魔性的认识,尝试提出新的模型。(三)丰富建模活动。全面开展数学建模活动是数学建模思想的最重要的形式,它既使课内和课外知识相互结合,又可以普及建模知识与提高建模能力结合,可以培养学生利用数学知识分析和解决实际问题的能力,可以有效地提升了学生的数学综合素质。学校可以定期的开展数学建模宣传活动,扩大数学建模的知名度。学校还可以邀请有经验的专家和获奖学生开展建模讲座,提高对数学建模的重视,积极的组织建模活动。实践证明,只有根据独立院校的自身特点和培养目标,对数学建模课程的教学不断进行改革,才能解决独立院校数学建模课程教学的问题,才能真正的让学生喜欢上数学,喜欢上数学建模。
【参考文献】
[1]李大潜.将数学建模思想融入数学主干课程[J].中国大学教育.20xx.
[2]贾晓峰等.大学生数学建模竞赛与高等学校数学改革[J].工科数学.20xx:162.
[3]融入数学建模思想的高等数学教学研究[J].科技创新导报.20xx:162.
作者:李双 单位:湖北文理学院理工学院
数学建模论文2
【摘 要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。
【关键词】数学建模;数学教学;教学模式
什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。
一、数学建模
数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。
1.数学建模课程。
“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。
2.数学建模竞赛。
1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。
3.数学建模与创新教育。
创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。
二、数学建模与数学教学的关系
数学建模是数学应用与实践的.重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。
三、数学教学
1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。
2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。
①提高数学教师自身素质。
数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《国务院关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。
②创新数学教学模式 。
(1)必须转变教学理念。首先要转变继承性教育理念,注重培养学生综合素质与实际操作能力。其次要转变注入式教育理念,注重发挥学生主体能动性。再次要转变应试教育理念。注重素质的培养是长久发展之计。最后要转变传统教学模式。科技发展为教育教学实现提供多种选择。教育工作者应提供多种教学模式以提高学习效果。
(2)必须改革数学教学模式。传统讲授式教学模式有很多不足,学生参与不够,不能发挥学生的主体能动性。因此,在今后数学教学中,要注重发挥学生的主体能动性,如增加课题互动环节,采用小组讨论,教师引导等方式。
在数学教学过程中,要巧用提问。教师可针对某一具体教学内容根据数学思维方式特点巧设提问,让学生回答,教师在关键的地方进行启发点拨,并适当的总结。在问答过程中,培养学生分析和思考问题、解决问题能力;在数学教学过程中,可采用分组讨论形式。采用小组讨论与集体展示、互评相结合。旨在教育学生学会倾听,分析不同;学会表达,勇于提出见解,培养学生团队意识。
在数学课堂上可通过对典型案例的剖析,使学生亲历发现问题、认识问题和解决问题的过程。培养学生实际动手操作能力。
(3)建立多元化评价机制。一是要建立多元化教师教学评价机制。采用多元化考核、综合评定教师教学效果的方法,有利于教师发展。二是要建立多元化学生学习效果评价机制。多元化评价机制对学生评价更客观、公正,有利于发挥学生主观能动性。
数学建模论文3
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
3.1利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
3.2利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
3.3提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的',既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
4.1教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
4.2重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
4.3重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
数学建模论文4
关键词:数学建模;力学实践;科学思维;创新能力
数学模型是解决各种实际问题的过程,是将数学应用于力学等现代自然科学的重要桥梁。数学建模不仅是数学走向力学应用的必经之路,而且也是科学思维建立的基础。通过数学建模分析力学问题,将数学应用于实际的尝试,亲历发现和创造的过程,可以取得在课堂里和书本上无法获得的宝贵经验和亲身感受,不断深化科学思维,培养学生的创新意识和实践能力。数学建模对力学教学思维的建立具有重要的指导作用。
一、数学建模与数学建模教学的发展
数学建模最早出现于公元前3世纪,欧几里得所写的《几何原本》为现实世界的空间形式构建了数学模型。可以说,数学模型与数学是同时产生的。数学建模的发展贯穿近代力学的发展过程,两者互相促进,相互推动。开普勒总结的行星运动三大规律、牛顿的万有引力公式、电动力学中的Maxwell方程、流体力学中的Navier-Stokes方程与Euler方程以及量子力学中的Schrodinger方程等等,无不是经典的数学建模。1985年,美国开始举办国际大学生数学建模竞赛,至此数学建模的教育开始引起广泛的重视。数学建模在我国兴起并被广泛使用是近三十年的事。从1982年起我国开设“数学建模”课程,1992年起举办全国大学生数学建模竞赛,现在已经成为我国高校规模最大的课外科技活动。20xx年,开展“将数学建模的思想与方法融入数学类主干课程”的教改实践,20xx年,《数学建模及其应用》杂志创办。
二、数学建模对力学教学的指导作用
1.数学建模是将数学应用于力学实践的必要过程
数学建模(MathematicalModeling)是通过对实际问题的抽象、简化,建立起变量和参数间的'数学模型,求解该数学问题并验证解,从而确定能否用于解决问题多次循环、不断深化的过程。数学模型(MathematicalModel)是指为了一个特定目的,对于一个现实问题,发掘其内在规律,通过积极主动的思维,提出适当的假设,运用数学工具得到的一个数学结构。数学建模几乎是一切应用科学的基础,用数学来解决的实际问题,都是通过数学建模的过程来进行的。而力学是应用科学的一个重要分支,一种力学理论往往和相应的一个数学分支相伴产生,如:运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等。因此,有人甚至认为力学应该也是一门应用数学。
2.数学建模是培养科学思维的基础
科学思维是以科学知识为基础的科学化、最优化的思维,是科学家适应现代实践活动方式和现代科技革命而创立的方法体系。科学思维的其他重要研究者Dunbar立足心理学视角指出,科学思维过程是建构理论、实验设计、假设检验、数据解释和科学发现等阶段中的认知过程。这个过程与数学建模完全吻合,因此数学建模是培养科学思维的基础。许多的力学家同时也是数学家,他们在力学研究工作中总是善于从复杂的现象中洞察问题本质,又能寻找合适的解决问题的数学模型,逐渐形成一套特有的思维与方法。数学建模不单单是对某个问题或是某类问题的研究和解决,更重要的是一种思维的培养。科学思维的培养是科学素养的重要组成,是科学教学的核心内容。
3.数学建模对培养学生的创新能力具有重要作用
数学建模是一个分析问题和解决实际问题的过程,从数学理论到应用数学,再到应用科学,它为培养学生从实践到理论再从理论回到实践的能力,创造了十分有利的条件。数学建模的过程是一个不断探索的过程,因此,数学建模竞赛是培养学生综合能力和发挥创新能力的有效途径。创新可以是前所未有的创造,也可以是在原有基础上的发展改进,即包含创造、改造和重组等意思。数学模型来源于错综复杂的客观实际,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,从貌似不同的问题中抓住其本质,常常需要打破常规、突破传统。可以说,培养学生的创造能力始终贯穿在数学建模的整个过程。在数学建模的过程中体现了知识的创新、方法的创新、结果的创新和应用的创新。
三、数学建模在力学教学中的现状
数学建模教育在我国取得了长足的发展,越来越多的本科、专科和高职学院开设了数学建模课程,但普及率并不高,并且大部分学校只针对特殊专业开设,如中南大学物理升华班,湖南师范大学数学与应用数学专业等。在学习力学之前,学生对数学建模的了解主要来自于高校对数模竞赛的宣传,所知有限。教师应在本科第一堂力学课上帮助学生树立正确的数学建模概念,将数学建模贯穿整个教学过程。在教学过程中重视数学建模思维的培养,联系实际力学问题培养学生的创新能力。
参考文献:
[1]孙琳.浅析数学建模[J].大学数学,20xx,23(05):129-134.
[2]米广春.科学思维培养的实证研究:MBD教学模式的建构及其影响[D].华东师范大学,20xx:28-35.
[3]晁增福,邢小宁,周保平.数学建模对大学数学教学的影响[J].大众科技,20xx(06):179-182.
[4]李大潜.从数学建模到问题驱动的应用数学[J].数学建模及其应用,20xx,3(03):1-9.
[5]杨四香.浅析高等数学教学中数学建模思想的渗透[J].长春教育学院学报,20xx,30(03):89-95.
[6]刘唐伟,熊思灿,乐励华.大学生数学建模竞赛与创新能力培养[J].东华理工大学学报:社会科学版,20xx,27(01):77-79.
[7]吴庆军,刘永建,李燕萍.大学生数学建模竞赛与大学生创新能力的培养[J].玉林师范学院学报,20xx,32(05):23-28.
数学建模论文5
概率论与数理统计是一门研究随机现象及其统计规律的数学学科,它是高等院校各专业开设的重要的基础数学课程之一。以下是“概率统计中融入数学建模思想的教学探索论文”,希望能够帮助的到您!
如何运用该课程的理论知识解决实际问题具有非常重要的研究意义。每年一次的全国大学生数学建模竞赛是目前各高校的规模较大的课外科技活动之一。数学建模是一门运用数学工具和计算机技术,通过建立数学模型来解决现实中各种实际问题的新学科。它通过调查,收集数据、资料,观察和研究其固有的内在规律,提出假设,经过抽象简化,建立反映实际问题的数学模型,即将现实问题转化为数学问题。纵观历年数学建模竞赛试题,像高等教育的学费问题、北京奥运会人流分布、DNA序列分类问题、DVD在线租赁问题及医院病床的合理安排等问题都不同程度地涉及到了概率论与数理统计的相关知识。笔者多年来一直为理工科的本科生讲授概率论与数理统计课程,并每年辅导和指导全国大学生数学建模竞赛,所以与同事们一直都在探索如何深化概率论与数理统计这门课程的教学改革,使其与数学建模思想能有机结合。本文将从以下几方面进行探讨研究。
一、概率统计教学中融入数学建模思想的重要性
传统的概率论与数理统计课程的教学,可以简单地归纳为:数学知识+例子说明+解题+考试。这种模式虽然使学生在一定程度上掌握了基础知识,提高了计算能力,也学会了运用所学知识解决课后作业和应付考试。但也不难看出,这种教学方式与实际严重脱节,学生学会了书本知识,但却不知在所学专业中该如何运用,这不仅与素质教育的宗旨相违背,也极大地削弱了学生学习这门课程的能动性,从而也影响了教学效果。数学建模的指导思想恰恰在于培养学生运用所学理论知识来解决现实实际问题。这不仅仅是这门课程对学生的教育问题,更是顺应当前素质教育和教学改革的需要问题。
二、在课堂教学中融入数学建模思想
对于讲授概率论与数理统计这门课程的教师来说,有着非常重要的任务,那就是如何教好这门课程,即如何使学生通过对这门课程的学习而增强其对概率统计方法的理解与实际应用能力。
1.教学内容上数学建模思想的渗透。众所周知,教师对教学内容的把握起着不容忽视的作用。有效的教学是依赖于教师对该课程的内容有着全面的`和深刻的理解。概率统计中的一些概念、性质、模型的应用确实有些难度,在日常教学中可以通过精选例题、切近现实生活,使学生逐渐深化对相关知识的理解,即讲课的内容生活化、趣味化,生活中的概率统计问题模型化。在概率统计里这些趣味性的例子比比皆是!比如摸球、投掷骰子等常见的游戏,“父母的身高对子女的影响”、“男女生人数的均衡对一个班级学习效果的影响”等发生在身边的事。在概率统计这门课程中数学模型的影子也随处可见!比如像降雨概率、人体舒适度指数、超市银台处的等待服务时间等这样的随机现象问题都需要将实际问题数量化,然后对研究对象做出判断,从而解决问题。教学内容中也可插入一些反映社会经济生活的背景与热点问题,使课堂教育跟上时代步伐。如有奖促销问题、保险赔偿金确定问题、交通事故问题等,这样的内容都旨在培养学生利用数学工具分析解决实际问题的意识和能力,也就是培养学生的建模能力。
2.教学方法中融入数学建模思想。在教学中,教师的责任更大地体现在对学生的引导能力,通过引导使学生运用自己的能力来解决相关的问题。这样使学生不但能够学到严谨的理论知识,同时也提高了学生分析问题和解决问题的能力。在教学中,我们主要采用精讲与导学相结合的方法,同时在课堂教学的各个环节中也可恰当运用讨论式、启发式、归纳类比式等教学方法。在运用各种教学方法中都要充分关注学生的参与性,在与学生的互动中挖掘出课本内容中的数学建模思想,使其“显化”出来。比如在讲解随机事件和古典概型中,可以讲解摸球问题、生日巧合及配对问题、确诊率及血清化验问题等,这样既活跃了课堂氛围,又培养了学生爱思考的习惯。必须提及的是“案例教学法”,它是概率统计课程融入数学建模思想的有效而常用的教学方法之一。在教学中可以直接给出案例,然后从求解具体问题中找出相应的理论和方法。此方法缩短了数学理论与实际应用的距离,不仅可以提高学生学习的积极性,同时也使学生明白概率统计是建立在现实生活基础上的一门课程。比如在随机变量的数字特征中,可以给出“报童的收益问题”案例;在参数估计中,可以给出“湖中鱼的数量估计”案例;在大数定律和中心极限定理中,可以给出“保险公司的收益问题”案例;等等。由于受到课时限制,可能不能充分有效地对案例进行完整讲解,通常将“案例分析法”和“现代教育技术法”相结合进行教学,利用多媒体教学手段可以将案例中出现的大量统计计算均由统计软件(如Spss,SAS,R等)来实现。这样既易于被学生接受,也有助于学生掌握统计方法和实际操作能力。
三、发挥课后作业作为课堂教学的补充与延伸作用
作为数学课程,课后作业是十分重要的组成部分,是进一步理解、消化和巩固课堂教学内容的重要环节。
1.课后试验。在概率统计这门课程中有很多随机试验,并且很多统计规律也都是在随机试验中获得的。比如通过投掷均匀的硬币和均匀的六面体骰子,可以很好地理解频率与概率之间的关系;双色球的有(无)放回抽样,有助于理解随机事件的相互独立性;统计某书上的错别字,并判断是否服从泊松分布等。通过让学生们亲自做实验,不仅使他们能够探索随机现象的统计规律性,还能帮助他们更深刻的理解、巩固和深化理论。
2.课后作业。除常规概率统计练习题目外,可以增加一些有趣的、与日常生活中密切相关的概率统计题目。比如在给出了摸彩票规则和中奖规则后,解决下面三个问题:
(1)中奖概率与摸彩票的次序有关系吗?
(2)假设发行了100万张彩票,中一、二等奖的概率是多少?
(3)若你打算摸彩票,在什么条件下中奖概率会大一些?
3.课外实践。针对概率统计实用性强的特点,有目的地组织学生参加社会实践活动,深入实际,调查研究,收集数学建模的素材。只有将某种思想方法应用到实践中去,实际解决几个问题,才能达到理解、深化、巩固和提高的效果。教师可以从现实中寻找素材,选择具有丰富现实背景的学习材料,可以让学生自由组队,深入实际,运用统计方法调查、观察和收集一些数据,在教师指导下运用所学知识和计算机技术,分析解决一些实际问题,写出书面报告。比如利用闲暇时间观察校门口某路公交车各时段乘车人数,根据观察数据,为该线路设计一个便于操作的公交车调度方案:包括发车时刻表;共需多少辆车;以怎样的程度能够照顾乘客和公交公司双方的利益。
四、改变传统单一的考核方式
考核是教学过程中不可缺少的一个教学环节,是检验学生学习情况,评估教师教学质量的手段。传统的概率论与数理统计课程均采用期末闭卷考试,教师通常都会按照固定的内容和格式出题,学生为了应付考试,往往把过多的精力花费在对公式和概念的死记硬背上,而忽略了所学知识在实际中的应用。虽然综合成绩是由平时成绩和期末成绩的各占比例计算而成,但平时成绩的考核主要看课后习题所做的作业,而学生的学习积极性对作业的态度差异性是很大的。为此,有必要改革传统单一的考核方式,培养学生综合运用知识的能力。考核结果包括两部分:一部分是闭卷考试,占60%,主要考察学生对概率统计的基本知识、基本运算和基本理论的掌握程度;另一部分是开放性考核,由各占20%的平时成绩和课后试验、课外实践构成,其中平时成绩主要考查学生的作业情况、考勤情况、课堂表现情况等方面;课后试验、课外实践主要考核学生对概率统计知识的应用能力,可以给学生一些实际问题,或者让学生参加社会实践调查收集数据,学生可以自由组队也可单独完成,通过运用概率统计知识建立数学模型并借助计算机处理大量数据对实际问题得到解决,最后提交一份书面研究报告。如此灵活多变的考核机制,才能充分调动学生学习的积极性和主动性,才有利于学生应用能力的培养。
通过在各个环节中融入数学建模思想,不但充分体现了概率统计的实用价值,搭建起概率统计知识与实际应用的桥梁,而且也使得工科类学生对概率统计这门课程的理解、认识增强了,数学的应用能力也得到了提高。
数学建模论文6
1摘要
“摘要”是对整篇论文的缩写,建立在通读全文、理解全文的基础之上。评审专家评阅论文时,总是先看摘要,摘要给专家留下第一印象,是评奖的敲门砖。“摘要”包括: 问题背景,要达到什么目标,解决问题的思路、方法和步骤,模型的主要内容、算法和结论,模型的特色。好的“摘要”能很快吸引评审专家的注意力,它建立在多次修改、反复推敲的基础之上,具有统揽全文、层次分明、重点突出、文笔流畅的特点。
2问题提出
“问题提出”也可写作“问题重述”。是将竞赛试题所给定的问题背景和解题要求用论文书写者自己的语言重新表述。在美国的数学建模竞赛中,这一部分称为 Background或者 Introduction。
3模型假设
任何问题的求解都有它的背景和适用范围,建模试题来自于现实问题,同样受到各种外在因素的约束。“模型假设”就是界定一个范围,或给出几个约束条件,一使得问题的解决过程不至于太复杂,二使得其他人在使用该模型时知晓它的适用范围。“模型假设”不是凭空臆造的,是在建立模型的过程中挖掘、提炼出来的。
4符号说明
数学符号是数学语言的基本元素,具有抽象性、准确性、简洁性的特点。数学模型由数学符号组成,模型的求解通过符号的运算来完成。可见,在建立数学模型时根据需要随时引入必要的数学符号是多么重要的事情。根据竞赛要求,在建立模型的过程中所引入的数学符号要在本模块给出说明,最好的说明方式是列一个表格。
5问题分析
众所周知,解决数学问题最难、最重要的一步就是明确解题思路,确定解题方法。而“分析”,则是迈出这一步的关键。数学建模也这样。建模试题往往由几个子问题组成,这时的“问题分析”既要有全局分析,也要有局部分析。“问题分析”包括: 分析解决该问题需要用到哪些专业背景知识; 分析解决问题的切入点、重点和难点; 分析解决问题的思路、方法、工具和步骤。这样的分析对于“如何建立模型? 采用哪些数学理论或公式? 怎样求解? 会遇到哪些困难?”具有指导作用。
6模型建立
“模型建立”就是将原问题抽象成数学的表示式,主要步骤:
第一步,根据问题的实际背景和专业背景,选择适当的数学理论或工具。例如,如果是变化率问题,则考虑借助于导数或微分方程的手段; 如果涉及面积、体积、曲线弧长、功、流量等几何量或物理量,则考虑运用积分元素法,将问题转化为定积分、或重积分、或曲线曲面积分; 如果是随机数据的处理,则考虑统计分析的方法。
第二步,确定常量、变量,用符号来表示这些量。
第三步,建立数学模型,即建立常量、变量之间的关系。这种关系可以是方程、函数或表格。
7模型求解
少数模型可能是简单的数学式子,求解起来比较容易。有些模型虽然也可用数学式子表示,但其中含有难以析出的参数,求解很困难,有的模型面对的.就是一堆数据,对于这两种情形,就需要借助于软件 Matlab,Mathematic,Maple,SAS,SPSS中的某一个编程求解。
8模型检验
数学建模竞赛的题目来自于科技、工程、经济、社会等领域的实际问题。由于问题的复杂性和方法的局限性,所建立的数学模型与实际情况之间会有差距,模型可靠性的检验成为必然。为了检验提交的数学模型与实际情况吻合的程度,竞赛题中往往会提供一些来自于背景问题的实验数据。“模型检验”就是将给定的数据代入模型,计算相对误差和绝对误差,如果误差较大,就要返回去调整模型以提高可靠性。
9模型评价
该标题也可写成“模型的优缺点分析”。分析模型有哪些优点,缺点是什么。也有人将这里的标题改写为“模型评价、推广与改进”。其中的“推广”是将前述“模型假设”中的某些 条 件 适 当 放 宽,看看结果会怎样。“改进”是指对模型或算法做出某种改进。
10参考文献
列式参考的主要文献。
11附录
详细的软件程序、程序运算过程、运算结果; 用于模型检验的数据表格; 其他不宜放在正文中的数据表格。
数学建模论文7
目前,高等数学的实际教学仍处于简单的知识理论传授阶段,没有与实际问题紧密衔接,这样会给学生中造成一种数学没有实用价值的想法,无法令学生感受数学在解决实际问题时的关键,因此开展数学建模课程第二课堂就是将所学的数学知识应用到解决实践问题的辅助教学,能够使学生在学习数学建模的过程中认识到数学的实用价值。
一、开展数学建模课程的必要性
(一)激发学生学习数学的兴趣。传统的数学课堂教育模式主要追求的是数学知识的理论传授,课堂的主要时间一般都是是在进行数学概念与公式的演绎和推理证明,这样会影响学生学习数学的兴趣;而开展数学建模课程第二课堂的辅助教学既可以能让学生在感受数学严谨的逻辑推理的同时,又能将所学的数学知识参与到解决实际问题的全过程中去;与传统数学课堂教学相结合,不仅能促使学生更好地理解、应用数学,激发学生学习数学的兴趣,同时也能弥补传统数学课堂与实际结合不紧密的现象。
(二)培养学生创新思维的能力。数学模型是对于现实世界的某一特定问题,为了达到我们所需的某个目的,揭示其内在规律,通过合理化的假设,运用适当的数学工具得到的一个数学结构。所以在学生建立数学模型的过程中,能够培养学生的创造性性思维,探究数学知识与现实世界之间的联系,极大地促进学生的创新意识,创新精神和创新能力的发展,充分发掘学生学习数学的潜能。(三)提高学生的综合素质。数学已经向生物、政治、经济以及军事等自然学科、工程技术及管理科学中渗透、交叉、融合。利用数学建模来解决实际问题,不仅需要所学的数学知识,而且需要多方面的其他学科的知识以及一些常用的数据处理软件,比如MATLAB、mathematica。所以学生学习如何建立数学建模的过程,不但可以提高学生的数学素质与实际操作技能,而且可以加深学生对实际问题的深入了解,从而拓宽学生的知识面、提高学生的综合素质。
二、数学建模课程的实施计划
(一)建模课程内容的设置。1.讲解数学建模的基本知识以及应用的软件。在数学建模的数学课堂上可以讲解数学建模的概念、方法与步骤以及数学模型的特点与分类,让学生在心中对数学建模有个初步的认识,奠定数学应用的根基,让学生掌握数学建模过程;同时结合浅显易懂的数学案例介绍常用的数学模型比如初等模型、微分模型、线性代数模型、数学规划模型和概率统计模型等,让数学真正走向解决实际问题的道路。另外,老师向学生介绍常用的数学应用软件LINGO、MATLAB、MATHEMATIC,让学生学会利用计算机技术来解决数学数据问题。2.讲解与学生专业相关的典型案例模型。高等数学是重要的基础课,是以后学习专业课的基础前提。老师可以结合专业课中与数。学相关的知识,有目的.性地选择典型案例进行教学,这样能够有效地激起学生的求知欲。在讲解数学建模过程中可以强化案例中的数学思维及数学应用意识,提高学生的专业能力,这样能够建立正确的数学观念,拓宽学生解决问题的思路,提高学生分析并解决实际问题的能力,强化学生对专业知识的理解。真正将数学理论运用到解决专业问题的学习中去,达到学以致用的作用。3.讲解数学知识的背景意义。高等数学教材中的基本理论基本上都是从现实问题中提炼出来的数学模型。所以教师可以选取恰当的素材和资料积极引导学生参与到第二课堂教学的活动当中,让学生真正理解数学知识的背景和意义,通过了解数学原理的背景,进一步可以辅助传统的数学教学。(二)建模课堂的教学方法。数学建模的第二课堂教学可以尝试多种灵活的教学方法,突破传统的数学课堂的教育教学方法,比如现在提倡的自主型教学法、分层教学法、翻转课堂教学法、综合教学法等等,在教学的过程中,教师可以提供丰富的教学材料,不再只局限于数学知识的范畴,拓宽学生的视野,同时老师采用的教学方法有助于培养学生养成灵活多变的学习方法,从而使数学教学从过去的枯燥乏味的模式中摆脱出来,提高学生学习数学的乐趣。(三)建模课程的考核方式。数学建模的考核方式可以仿照全国大学生数学竞赛活动的方案进行,每三人一组,根据学生的学习程度设置一个实际问题,这三个人分工明确,通过共同努力撰写一篇数学建模论文,这种考核方式不仅有助于将积累的建模知识运用于实际操作中,也能培养学生的团队合作意识和团队合作精神以及语言表达能力,真正体验通过建模的思想利用数学知识来解决实际问题,提高学习数学的自我效能感。总之,数学建模第二课堂教学的开展不仅可以提高学生应用数学和解决问题的能力,同时也能增强学生的应用数学意识与创新精神。但高等数学的教学改革也会随着社会的不断发展与时俱进,学校如何更好地将数学理论知识同实际紧密结合仍然是一项艰巨而又长远的任务。
参考文献:
[1]张美玲,赵有益,薛自学,大学数学教学中数学建模思想的渗透,赤峰学院学报(自然科学版),20xx,33(2):207-208.
[2]陈玉玲,高职院校数学建模课程改革的分析与思考,贵州广播电视大学学报,20xx,24(4):26-50.
[3]贺艳琴,将数学竞赛活动融入到高等数学教改中的实践,学术讨论,20xx,10(上):207-207.
[4]魏显峰,论数学建模思想在高等数学教学中的应用,科技论坛,20xx(33):11-11.
[5]韩海峰,融入数学建模思想的高等数学教学研究,中国培训,20xx(2):192-192.
作者:孙绍影 吴紫薇 单位:1.陆军装甲兵学院士官学校 2.陆军装甲兵学院士官学校
数学建模论文8
一、高数教学里的量化指标与线性关系
要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;其次,要分析出各个参数之间的线性关系;然后,才能建立模型的计算公式,并进行测算、校验及修正。
在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。
经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的目的所在。
二、分析数学建模中的相关参数
我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:
(1)学生的上课签到情况;
(2)课堂问答的情况;
(3)作业的情况;
(4)测验的成绩。
这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:
1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。
2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的`学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。
所谓纵向对比,就是这一期学生,在学习高数的过程中,各阶段的课堂提问情况。横向对比,则是与前几期学生,以及同期别的班的学生相比,这一班学生的课堂问答情况。当然,也有可能出现学生不积极提问,同时教学难度也不大的情况。这时候就要用到下一个关键参数——测验。
3.测验的成绩。课堂问答相当于抽检,而测验则是一次小规模的普查。测验的结果可以较为真实的反映出学生的学习成果。不过,测验不可能频繁的进行。因为课时安排主要还是以授课为主。过多的测试,有可能导致本末倒置。
4.作业的情况。除了测试之外,一个比较好的检测学生学习状况的方法,就是作业。大学的作业,由于教学安排的原因,不像中小学作业那样密集。同时,教授的主要工作也不是批改作业。但抽查作业的完成情况,仍然可以对了解学生的学习情况起到一些辅助作用。
三、建立数学模型
分析了数学建模的相关参数,我们就要着手进行数学建模。尽管模型中的几项参数,与考试成绩之间都是乘数关系,但是各项参数之间并不是简单的乘数关系,而是相互有一个比例。所以,在建立模型时,我们采用将参数域对象相乘,然后相加,取和,然后在分析与考试成绩之间的线性关系。
我们设立这样一个方程式:
上课签到情况×参数值A×权重值1+课堂问答情况×参数值B×权重值2+作业情况×参数值C×权重值3+测验情况×参数值D×权重值4=考试成绩。
然后,实际成绩进行比对。
在这个过程中,调整参数对象的值,以及四个权重值,推算出接近于考试成绩的公式,这样就可以建立起一个初步的数学模型。
四、对数学模型进行应用和修正
建立了数学模型后,还需要根据实际的教学情况,进行修正,是数学模型与真实情况相接近,从而对教学工作有真正的应用价值。
当数学模型经过修正逐渐完善后,根据各项教学指标,就可以有预见性地调整教学工作。比如,课堂提问数量的上升,作业的情况良好,则教学情况有可能是在向好的方向发展。反之,就可及时进行调整。比如,增加与学生的交流,看是哪些地方还不尽理解,或者有些什么别的因素在影响,及早排查,从而确保期末考试成绩不出现大的波动,影响教学质量。
通过在高等数学教学中,融入数学建模的思想,我们可以发现,以往那些不太理解的量化指标,确实是与教学质量之间有着必然联系的。通过数学建模,我们不仅促进了对科学化的教学方式的理解,也对数学建模这一工具方法本身,有了更多更深刻的了解。
数学建模论文9
近年来,随着教学改革的不断深化,在大学中开展数学建模竞赛受到了越来越多的关注,数学建模能把现实生活中复杂的问题转化为简单的数学模型,并对其进行较好的解决。本文主要就数学建模活动开展的重要性及数学建模中创新意识培养现状进行分析,然后结合实际对数学建模中创新意识培养的策略进行详细探究。
一、引言
数学建模主要是针对现实世界的特定对象进行的研究,或有着特定的目的,然后对问题做出简化假设,把现实问题用数学的语言进行表达,采用特定的数学模型对问题进行解决,最后对模型进行检验,判别模型的适用性。由于数学建模的题目是一个多学科交叉的问题,不仅要求学生了解该问题之前的研究,而且要在之前的研究上进行创新,可见,创新意识在数学建模中起着非常重要的作用。
二、数学建模活动开展的重要性及数学建模中创新意识培养现状
(一)数学建模活动开展的重要性分析
数学建模活动的开展有着积极作用,对学生的创新意识能力培养有很大的益处。对于数学建模并没有标准模式,即便是同一问题的研究也有着多样的思路方法,通过数学建模能对学生的视野加以拓展,对学生的创新意识培养有着积极作用。不仅如此,也能对学生的自学能力和思维能力以及学生间的合作精神等方面进行有效的培养。数学建模对学生的专业知识综合性的应用能力提升也有着积极促进作用,数学建模能够在诸多的科技领域得到有效应用[1]。学生能够根据自身的专业,通过数学建模来解决实际问题,这能让学生的`综合知识运用能力得到有效提升。
(二)数学建模中创新意识培养的现状分析
从现阶段数学建模创新意识培养的实际情况来看,在诸多层面还存在问题有待解决。这些问题主要体现在教学的观念上还有待进一步更新。在以往的教学过程中,教师在公式的推导以及定理的证明方面比较重视,这对学生求知欲的激发以及创新意识的培养有着诸多不利。很显然这一教学方式与当前的教学发展要求是不适应的。还有是教师在科研意识以及创造能力方面也有待进一步提升,创造性是教师能力的重要内容。在近些年的数学建模课程教学过程中,一些问题还没有现成的经验,面对新的问题教师不能及时地解决。
从学生层面来说,也有着诸多问题存在,主要是思维品质有待进一步加强。要培养学生的数学建模创新意识,就需要培养学生良好的思维品质,如顽强的毅力、稳定的情感、强烈的求知欲等。但是从实际情况来看,学生在这些方面还没有鲜明的呈现,在面对数学问题的时候常常是没有自信,对数学问题的核心思想没有得到深入的了解,这样就使得学生的创新意识培养有着很大的难度[2]。
再有,学生在实际问题的数学转化能力方面相对比较差。数学建模在形式上是多样化的,具体的问题能够通过多样化的方式来进行思考解决,但是学生在面对实际问题的时候,往往缺乏将实际问题转化为数学问题的能力。这就导致在创新意识的培养方面也存在诸多困境。
三、数学建模中创新意识培养的优化策略探究
数学建模中创新意识的培养要从多方面加强重视,首先要能将数学建模教学和当前教材紧密地结合,教师要学会在各教学章节引入数学模型。例如:在对立体几何讲授过程中,要能够将正方体模型以及长方体模型加以引入,这样对实际问题的解决就比较容易,在教学的潜移默化作用下,学生也能逐渐地对建模的应用方法进行领悟,这对学生数学建模兴趣的培养也有着积极的促进作用。
对学生的创新意识培养要鼓励学生大胆地想象,对学生的知觉思维加以培养,这一思维的培养是在长期实践中不断积累经验以及知识,从而产生比较富有创造性的思路,这也是认识上质的飞越[3]。教师对学生别出心裁的想象要能进行鼓励,例如在学习导数的时候,就能将物理中的瞬时速度公式在数学建模教学中加以引入,这样就能让学生有比较独特的见解和思考方法,对学生的创新思维意识培养有着积极作用。
数学建模中的创新意识培养要能引导创新,对学生的思维能力加强培养。教师在教学中的例题选择以及设计过程中,要和实际相结合,加强一题多练训练,对公式的原理引导以及变换和延伸等方面的能力要有效加强,将相似性以及相反性的问题进行延伸,这样对学生的创造性思维的培养就有着积极促进作用。
再有是要构建数学建模的意识,对学生的转换能力要加强培养,数学建模就是将实际问题通过数学语言转换成数学问题。在这一方面的能力培养上要充分重视,使学生的思维品质灵活性以及开发智能等方面得到有效培养,有效提升学生解决实际问题的能力,从而也对学生独立思考的能力进行积极有效的培养[4]。
四、结语
总而言之,对于数学建模中的创新意识培养,要紧密地把理论和实际相结合,并要充分重视学生的个性化发展,对学生的奇思妙想要给予肯定和鼓励,这些都对学生的创新意识培养有着重要作用。数学建模为培养大学生的创新意识提供了良好的平台,相信随着大学生数学建模活动的开展和教学方法的改进,将有利于提高我国大学生的创新能力,为国家提供更多的优质人才。
数学建模论文10
生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。
我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。
我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖?
我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的'数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀!
我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23*9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=3.6(天),答:还要3.6天吃完。
书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。
生活中,数学真是无处不在……
数学建模论文11
引言
当前,高考第五批和中专对口升学学生成为高职院校的主要生源,高等数学在高职院校不仅是工科学生公共必修课,同时也为经济类的专业基础课,对学生学习后续专业课程非常重要。但学生数学基础相对薄弱,对学习不感兴趣,自制力差。而学生对线性代数抽象的概念定理及其冗繁的计算难以接受成为线性代数教学的突出表现,因此,在线性代数教学中融入数学建模思想方法是解决学生理解困难和实现教学目标的有效途径。
一、高职院校线性代数教学情况与建模发展概况
1.线性代数教学情况。行列式、矩阵和线性方程组是目前高职院校线性代数部分教学的主要内容,所用的教材是以理论计算为主体,教学偏重其基本定义和定理,过分强调理论学习,忽视其方法和应用,有关线性代数应用实例几乎不涉及。再者高职院校高等数学总体课时少,因此线性代数部分课时也非常有限,但其理论抽象,内容较多,教师在课堂上大多采用填鸭式的教学方式,导致该课程与实际应用严重脱离,造成了学生感觉线性代数知识枯燥,计算繁杂,学习它无用处,大大降低了学生的学习热情。
2.数学建模及其发展概况。数学建模的基本思想是利用数学知识解决实际问题,是对问题进行调查、观察和分析,提出假设,经过抽象简化,建立反映实际问题的数量关系;并利用数学知识和Matlab、Lingo、Mathematics等数学软件求解所得到的模型;再用所得结论解释实际问题,结合实际信息来检验结果,最后根据验证情况来对模型进行改进和应用,它使学数学与用数学得到统一。数学建模大专组竞赛开展已有15年,参赛的高职院校逐年增加,我院在多年的参赛中取得了一定的成果,但因数学建模难度大和学生数学基础薄弱以及高职院校学制的原因,参加数学建模培训的学生基本为大一新生,而且只有小部分,明显受益面小。
二、数学建模思想融人线性代数教学中的具体实施线性代数因其理论抽象,逻辑严密,计算繁琐,让人对其现实意义感受不到,使高职学生学习起来有困难,也就很难激发学生的学习兴趣,因此,线性代数教学过程中就要求教师介绍应用案例应体现科学性、通俗性和实用性。
1.数学建模思想融入线性代数理论教学中。线性代数中的行列式、矩阵、矩阵乘法、线性方程组等复杂抽象的概念都可以通过实际问题经过抽象和概括得到,故而可以恰当选取一些生动的实例来吸引学生的注意力,通过对实际背景问题的提出、分析、归纳和总结过程的引入线性代数定义,同时自然地建立起概念模型,让学生切实体会把实际问题转化为数学的过程,逐步培养学生的数学建模思想。比如讲授行列式定义之前,可以引入一个货物交换模型,并介绍模型是由诺贝尔经济学奖获得者列昂杰夫(Leontief)提出,让学生拓展视野。引导学生分析问题,建立一个三元线性方程组来求解该问题,再以此问题引出行列式,使学生了解行列式应用背景是为求解线性方程组而定义的。从简单的经济问题入手,让学生了解知识的应用背景,使学生感受到学习行列式是为生产实践服务的,提高学生学习的积极性[2],明确学生学习的目的性。
2.数学建模思想融入线性代数案例教学中。选择简单的实际案例作为线性代数例题,给学生讲授理论知识的同时引导学生对问题进行分析,对案例进行适当简化并做出合理假设,再建立数学模型并求解,进而用结果解释实际案例,学生通过这样的学习过程容易理解掌握理论知识,同时也体会了数学建模的.基本思想,更让学生认识到线性代数的实用价值,而且有利于提高学生分析问题和解决问题的能力。对于不同的专业,可以根据专业需要引入相应的数学模型,但专业性不能太强,由于大一学生还暂时没有学,因课时限制,在线性代数课堂教学中应该采用简单的例子。比如经管类专业的学生学习矩阵和线性方程组的相关例题时,可以分别选择简单的投入产出问题和互付工资问题的数学模型;而电子通信类专业的学生学习矩阵和线性方程组的相关例题时,可以加入简单的电路设计问题和电路网络问题的数学模型。
3.数学建模思想融入线性代数课后练习中。高职院校线性代数教学内容侧重于理论,课后习题的配置大多数只是为学生巩固基础知识和运算技巧的,对线性代数的定义、定理的实际应用问题基本没有涉及,学生的实际应用训练不够,因此适当地补充一些简单的线性代数建模习题,让学生通过对所学的知识与数学建模思想方法相结合来解决。我们从两个方面具体实施:
(1)在线性代数课程中加入Matlab数学实验,利用2个学时介绍与行列式、矩阵、线性方程组等内容相关的Matlab软件的基础知识,再安排2个学时让学生上机练习并提交一份应用Matlab计算行列式、矩阵和线性方程组相关内容的实验报告。
(2)针对所学的内容,开展1次数学建模习题活动,要求学生3人一组利用课余时间合作完成建模作业,作业以小论文形式提交,提交之后,教师让每组选一个代表简单介绍完成作业的思路和遇到的问题,其余队员可作补充,再针对文章的不同做出相应的点评并指出改进的方向。通过这种学习模式,不但提高学生自学和语言表达以及论文写作能力,而且利于培养学生团队合作和促进师生关系,教学效果也得以提升。
4.数学建模思想的案例融入线性代数教学中。案例1:矩阵的乘积。现有甲、乙、丙三个商家代理某厂家的A、B、C、D四款产品。四款产品的每箱单价和重量分别为A:20元,16千克;B:50元,20千克;C:30元,16千克;D:25元,12千克。甲代理商代理的产品与数量分别为A:20箱,B:5箱,D:8箱。乙代理商代理的产品与数量分别为B:12箱,C:16箱,D:10箱。丙代理商代理的产品与数量分别为A:10箱,B:30箱。求解三家代理商代理产品总价和总重量。模型假设:①在没任何促销优惠措施下严格按照单价和数量计算总价;②同款产品对即使不同级别的三家代理商执行同样的单价。模型建立:由已知数据分析可知,发往各代理商的产品类别不尽相同,通过用0代替,可以列成表。由此,分别将产品的单价和单位重量。
三、改革的初步成效
数学建模思想方法与线性代数的教学适当结合并灵活运用,这一教学改革提高了学生们的能力和素质,主要表现在以下几个方面:(1)熟练掌握Matlab等数学软件的使用,利用数学软件加深了数学理论知识的理解和应用;(2)学生学习积极性明显提高,启发学生初步产生用数学解决实际问题的意识;(3)学生已逐步形成一种建模思维,逐步形成良好的分析和处理问题的习惯。另外,适时应用数学建模思想教学,促进了线性代数教学方法的改进,提高教学水平和教学效果,利于高职高等数学的教学改革进一步推进和课程建设的长效发展。
总之,在高职院校高等数学各个教学模块中逐渐地融入数学建模思想方法,能使学生的数学素养有较大提高,并对教师教学理念的转变起到促进作用。
数学建模论文12
数学建模是用数学知识建立描述实际问题的模型,再进行模型求解,然后得到解决实际问题的方案.数学建模是运用数学及计算机等工具来解决生产和生活中的各种实际问题,是培养和提高学生创新能力和综合素质的一个有效途径.数学建模竞赛不仅是一项普通的学科竞赛,更是培养学生综合能力和创新意识的有效途径.数学建模与创新人才培养的关系,一直是教育教学研究方面的热点[1-8].现有文献大多是从人才培养模式入手,而从机制角度出发的研究文献尚不多见.因此,本文考虑依托数学建模竞赛,构建起一个创新型人才培养的五大机制,推动创新人才培养,对高校人才培养的方式、方法进行有益的探索与尝试.
1、创新型人才培养的五大机制
以数学建模竞赛活动为依托和载体,以培养创新型人才为目标,建立“引导、转化、协作、沟通表达、问题导向”五大机制,提高学生的学习兴趣,激发学生的学习动力,着重培养一种精神及三大能力,即团队精神,理论转化为实践的动手能力、语言文字表达能力和自主学习能力.五大机制与创新型人才培养关系见图 1.
图 1 创新型人才培养的五大机制
2、创新型人才培养五大机制的构建
2.1、建立引导机制,激发学习动力
数学建模竞赛所涉及的问题,都是来源于现实社会的生产与生活,有很强的实用性.参加数学建模竞赛的学生,通过竞赛活动本身,能够体会到大学所学的高等数学、线性代数、概率论、运筹优化等数学类课程.数据结构、C 语言、Matlab 等计算机课程以及文献检索类课程,都是非常有用的.对学生而言,参加数学建模竞赛,首要的效果是激发了学习兴趣,解决了学习的动力问题.即使没有获奖,对他们来说,收获也很大.对任何一门学科或一项工作,能产生兴趣,才能有不竭的动力,才有学习的主观能动性.创新的前提是有学习的兴趣和学习的快乐,只有解决这一根本问题,才能考虑创新型人才培养过程中的其他环节.因此,为培养创新型人才,要大力引导学生积极参加数学建模竞赛,建立培养创新型人才的引导机制.对每个学生,不以获奖为目标,而以“贵在参与”为宗旨.参与一次,体会一次,触动思想,产生兴趣,激发学习的动力,从而培养创新型人才的自我激励式自主学习能力.
2.2、建立转化机制,促进知识向能力的转化
将课本上的理论知识转化成为解决实际问题的实践能力是创新型人才培养过程中的关键环节.会学会用,学以致用,能解决实际问题是衡量人才的重要标准,纸上谈兵是不能适应社会需要的.数学建模竞赛能够使学生将所学的理论知识,通过竞赛活动,转化成自身的实践能力.如学习微分方程后,在考虑传染病传播问题时,就可以建立相应的微分方程模型,求解模型,然后根据模型计算结果提出传染病传播问题的相关解决方案.顺利地经历这样一个完整的过程,就可以将原来的微分方程知识转化成解决变化率与时间有关的一类实际问题的实践能力.当然,还有一些有趣的例子,如国防科技大学的周星、克居正建立了一个研究男生追女生的数学模型[9],用人类最理性的数学公式为人类最感性的恋爱行为建立了初步的动力学模型.将变量与因素的互动写成了一个随时间变化的常微分非线性方程组,从解析计算和数值模拟两个方面着重讨论了方程可能的结果,以及每种结果的稳定水平.依托数学建模竞赛,建立培养创新型人才的转化机制,大力推进知识向能力的转化,不断提高创新型人才的.实践能力.这是创新型人才培养的关键环节.
2.3、建立协作机制,增强团队意识
高校学生在平时的学习过程中,绝大多数情况下,基本上都是独自学习,与他人合作研究和解决问题机会很少.而在各种层次级别的数学建模竞赛中,参赛学生要 3 人一组,以团队而不是个人身份参赛.在正式比赛之前,要按照学科、特长等因素寻找队友,组成队伍.在比赛期间,由于队友经常是来自不同专业,知识能力水平各有所长,脾气秉性各有特点,需要在比赛时认真沟通,相互协调,合理分工,团结协作共同完成整个比赛.为了比赛,在发生矛盾时,要学会忍耐和妥协,而不能意气用事.在整个比赛期间,求同存异,取长补短,优势互补,最终合作完成任务.这个过程,无形中就培养了学生的合作意识和团队精神,使学生亲身感受到现代社会与人合作是大多数人成功的必要选择.依托数学建模竞赛,培养创新型人才的团队协作意识,建立培养人才的合作交流机制,这是适应社会和时代需要的人才培养过程中的重要环节之一。
2.4、建立沟通表达机制,提高学生的语言及文字表达能力
不同于其它类以答题为特点的学科竞赛,在数学建模竞赛中,参赛队员需要用自己的语言对赛题进行描述,在假设、建模、分析、求解、计算、结果分析及优缺点论述等环节都需要进行学术性的表达,最终完成一篇符合学术规范的论文.在这个过程中,参赛队员之间需要广泛交流沟通,选择最合适的方式,撰写完成一篇学术论文.在求解以及表达这些模型的过程中,提高了学生的软件应用水平和文章的写作水平,以及学生的口头表达能力和中英文科技论文写作能力.通过比赛,学生的语言及文字表达能力得到了极好的训练,对科研工作也有了初步的比较完整的了解.在现代社会,良好的语言及文字表达能力,对人际交往、经营业务往来、日常工作等各方面都是非常重要的.通过数学建模竞赛,建立沟通表达机制,有效地提高学生的表达能力,适应社会对创新型人才的要求.
2.5、建立问题导向机制,培养学生主动式学习的自主学习能力
历年来的数学建模竞赛试题,无一不是来源于工程技术和管理科学中的实际问题,内容涉及经济、能源、交通、环境、生态、医学、人口、生物和谈判等众多领域,具有很强的实际应用背景.数学建模题目都是各领域、各学科的一些具体实际问题,参赛的学生在之前不可能都了解这些背景和知识,有时候甚至是一无所知.所以学生必须在短时间内主动去收集资料、查阅大批文献以了解研究课题的实际背景及研究现状,然后创建数学模型、求解、检验和结果分析,最后将解决问题的最佳方案用英文写成科技论文.此外,建模过程中还必须自主地去研究和学习解决问题所需的各种数学新知识及大量的相关学科的新知识,背景和已有方法都清楚了,解决问题的新方法可能就自然生成了.通过数学建模竞赛活动,建立问题导向机制,变传统的“要我学”为“我要学”,实现主动式学习而非被动式学习,就会使创新型人才所必须具备的自主学习能力和快速学习能力得到充分的锻炼.
3、创新型人才培养五大机制的实施效果
3.1、促进了学生全面发展
参加过数学建模竞赛的学生,潜移默化地接受了按照五大机制运作的培养方法,提高了学习兴趣,增强了学习动力.课堂表现优于一般学生,能够积极参加其他类别的科技竞赛,主动参与教师的科研课题项目等,所表现出的积极进取精神和良好的科研素质习惯,得到了专业教师的认可.
3.2、提高了学生的就业质量
通过五大机制,培养了学生的实践能力、表达能力和自主学习能力,并且帮助学生树立了终身学习的理念,极大地提高了学生的就业竞争力.参加过数学建模竞赛的学生,考研和就业表现均优于一般学生,很多学生在国外就业或进入世界 500 强企业工作,且大多都受到用人单位的好评,普遍认为这些学生基础扎实,理工融合,能够胜任不同工作岗位的需求.
参考文献:
[1] 张晓鹏.美国大学创新人才培养模式探析[J].中国大学教学,20xx(3):7-11
[2] 周义仓,郝孝良.知识经济时代的创新人才培养与数学建模[J].工科数学,20xx(1):78-81
[3] 刘凤秋,毕卉,陈东彦,等.融合数学建模思想的理工科研究生创新能力培养模式[J].高师理科学刊,20xx,34(9):82-84
[4] 杨启帆,谈之奕.通过数学建模教学培养创新人才——浙江大学数学建模方法与实践教学取得明显人才培养效益[J].中国高教研究,20xx(12):84-85
[5] 王树忠,赵辉,陈东彦.数学建模在创新型人才培养中的作用[J].高师理科学刊,20xx,27(5):85-88
[6] 史彦龙.医药类高职高专数学建模的实践和创新型人才的培养探究[J].亚太教育,20xx(26):58-59
[7] 陈朝辉.探索数学建模活动对应用型人才创新实践能力的培养[J].黑龙江教育:理论与实践,20xx(1):73-74
[8] 陈传军,孙丰云,王智峰.数学建模教学是应用型本科数学人才培养的有效途径[J].教育教学论坛,20xx(24):166-167
[9] 周星,克居正.男生追女生的数学模型[J].数学的实践与认识,20xx(12):1-8
数学建模论文13
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
一、数学建模的含义
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
二、数学建模能力的培养与强化
1.精心设计导学案,引导学生通过自主探究进行建模
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。
2.在教学环节中融入数学模型教学
教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的'数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。
教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。
3.结合教学实验,开展数学建模活动
教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。
4.在数学建模教学中,注重相关学科的联系
教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的计算问题,也可以用数学上的排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。
总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。
参考文献:
[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[J].武汉船舶职業技术学院学报,20xx(4).
[2]王国君.高中数学建模教学[J].教育科学(引文版),20xx(8).
[3]李明振,齐建华.中学数学教师数学建模能力的培养[J].河南教育学院学报(自然科学版),20xx(2).
数学建模论文14
摘 要:数学建模竞赛是对大学生运用数学才能和计算机才能的归纳查验,数学建模的课程与练习也随之变成高校高级数学课程教育变革的一个首要方向。在实践的竞赛安排与练习进程中,经过社团活动、主题陈述、奖赏等办法激起学生的学习爱好,并联络系统教育与竞赛练习,使学生在竞赛进程中有所学、有所得。
关键字:数学建模竞赛、安排、练习
数学建模竞赛最早是由美国工业与运用数学学会在1985年建议的一项大学生竞赛活动,目的在于鼓舞学生学习数学的积极性,进步学生树立数学模型和运用计算机技术处理实践疑问的归纳才能,鼓舞广阔学生积极参加课外科技活动,开辟常识面,培育立异精神及协作认识,推进大学数学教育系统、教育内容和办法的变革。我国大学生数学建模竞赛是由教育部高教司和我国工业与数学学会主办、面向全国高级院校的、每年一届的通讯竞赛。其主旨是:立异认识、团队精神、重在参加、公平竞争。自1992年在我国兴办以来,每年一届,呈现出敏捷的展展开开势头,目前已变成全国高校计划最大的根底性学科竞赛,也是世界上计划最大的数学建模竞赛。20xx年,来自全国33个省/市/自治区(包含香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其间本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。能够说,数学建模现已变成全国高校计划最大课外科技活动。
1. 大学生数学建模竞赛的含义
大学生经过了十几年的数学类课程的学习,依然很难将课本的常识用来处理实践疑问。数学建模恰是联络数学理论与实践运用的桥梁。大学生数学建模竞赛给了大学生们一个开放的渠道,将所学的常识交融,在三地利间中经过自立学习,处理一个实践疑问。这种以方针为导向的'竞赛,能够充分调动大学生的自立学习积极性,表现学生的最大潜力。
正确地引导学生参加大学生数学建模竞赛,加深大学生对数学类常识的了解,进步大学生的自立学习的才能,是大学生数学建模竞赛的底子含义。
2. 激起学生爱好
许多大学生对数学建模充溢爱好,但是在应试教育的练习中,现已失掉对新鲜常识的渴望,对常识了解不行透彻,与实践运用之间有着无穷的距离。所以,怎么激起学生爱好,表现学生的主动性,削减学生的畏难情绪,让广阔学生都参加尽量,是非常首要地。
2.1 组成数学建模协会
组成数学建模协会,经过学生安排展开有关作业,不光使很多的数学建模爱好者有了归属感,也有了非常好的表现自我才能的渠道。经过数学建模爱好者表现辐射效果,股动别的学生参加到数学建模活动中。
2.2 安排主题陈述
由有数学建模带队经历的老师进行多方面的主题陈述,关于普通高校来说,一方面传递常识,另一方面经过对标题的剖析,引导学生怎么运用所学常识,激起学生爱好。陈述内容一是某种数学建模办法、软件;二是社会热点疑问或近来竞赛真题。陈述首要以剖析疑问、供给解题思路为主,不适合呈现太艰深的数学常识。别的,在陈述中拿出有些时刻与学生进行互动评论,使学生们有爱好进入到数学建模中来。
2.3 奖赏
向校园请求有关奖赏。假如学生全国大学生数学建模竞赛获奖的同学在引荐研究生方面给予优先思考,在奖学金鉴定上给予优先思考,或许能够获得必定的立异学分等等。
3. 安排教育
展开数学建模活动,首先是期望建模爱好者都能参加,从中学习常识,进步自学才能,进步剖析疑问处理疑问的才能。在安排教育中也应按照年级分层次安排教育。
3.1 根底
在低年级教育中,首要是高级数学的教育。在教育活动中,能找到根本的数学模型与高级数学常识的内在联络,比方人员模型多数为微积分的运用,最优报价模型能够用条件极值来处理。从高级数学的教育下手,使学生逐渐触摸并了解数学建模,树立开始的数学建模思维。
3.2 进步
当学生开始树立数学建模思维后,还应专门为有关理工科专业开设数学建模课程,教学常见的数学模型,如线性计划疑问、无约束优化疑问、非线性计划疑问、动态计划疑问、微分方程疑问、差分方程疑问、最短路径疑问、行遍性疑问、网络流疑问、数据的计算描绘和剖析、回归剖析,并进一步了解matlab、lingo、mathmetics等数学软件,敏捷扩宽学生的常识面。
3.3 归纳
在学生把握常见的数学模型后,对这些年的数学建模竞赛疑问进行详细剖析,供给参考性的解题思路。学生以此来做模拟练习,分组在一个月内,完结标题的剖析、材料搜集、材料收拾、树立数学模型、求解、查验模型,最终完结一篇陈述。老师依据每组陈述状况,进行点评,找出每组同学的优缺点,并要求其改正。
4. 竞赛练习
每年3-4月,我校进行3-4次专题讲座,首要强化学生的以下方面才能
(1) 材料查阅和论文写作技巧。大有些参赛学生没有撰写论文的练习,很难写出内容、形式都完整的论文,这恰恰是数学建模竞赛有必要做到的。
(2) 经典典范。经过经典典范,使学生对数学建模的各个方面愈加明晰明了,能够对论文的各有些内容有较为深刻的认识。
(3) 强化数学软件和计算机编程才能。近些年的竞赛标题,许多都涉及到海量数据,对海量数据的剖析、收拾、计算,都需求参赛队员具备必定的编程才能或数学软件的运用才能。把握编程才能通常变成求解的要害。
每年4月末,我校举行大学生数学建模校内赛,以实战的形式查验学生的学习效果。竞赛形式与全国大学生数学建模竞赛一致,由校表里专家命题,学生每三人一组报名参赛,在三地利间内,完结指定标题,并提交完整论文一份。完结后,由校内指导老师进行评定,并评出一、二、三等奖。赛后安排能较好完结论文的队员,做好剖析总结,依据每个学生的才能特色,从头分组,备战全国大学生数学建模竞赛。
5. 结束语
数学建模思维和才能的获得不是一朝一夕的工作,需求老师长时间详尽的练习,需求学生不断研究。数学的运用才能不同于数学专家的科研作业,不能只是把握数学常识,更需求学生有较为广泛的常识系统。作为教育作业者,咱们有职责持之以恒的给学生教授常识、传递数学的运用思维,为学生非常好地习惯社会做出自个的尽力。
参考文献
[1] 周义仓,赫孝良,数学建模试验[M],西安,西安交通大学出版社,20xx
[2] 王树禾,数学模型选讲[M],北京,科学出版社,20xx
[3] 赵静,但琦,数学建模与数学试验[M],北京,高级教育出版社,20xx
[4] 姜启源,谢金星,叶俊,数学模型[M],北京,高级教育出版社,20xx
数学建模论文15
一、引言
近年来,随着科学技术的飞跃进步和经济的快速发展,高校金融类专业对数学教学提出了越来越高的要求。以微积分为主要内容的高等数学课程是广大金融财经类高校学生的一门必修的重要基础课程,也是高校培养高层次金融人才必备素质的基本课程。高等数学课程为学生日后继续学习的概率论与数理统计、计量经济学、微观经济学等课程提供了必不可少的数学基础知识。同时也为培养学生的逻辑思维能力、分析和解决实际问题的能力打下了坚实的基础。
毫无疑问,数学作为一门主要的基础学科在高等院校的金融财经专业发挥着越来越重要的作用。当需要用数学方法解决实际生产生活中遇到的问题时,关键的一步是用数学的语言来描述所研究的对象,即建立数学模型[1]。数学模型的建立要求建立者对实际问题进行细致分析,同时合理地应用数学符号、数学知识、图形等对实际问题进行本质并且抽象的描绘,而不是现实问题的直接翻版。这种利用数学基础知识抽象、提炼出数学模型的过程就称为数学建模[2]。高等数学的教学要适应经济快速发展的潮流,更好地服务于社会,把数学建模思想融入其中不失为一个正确而且必要的选择。
二、金融类高校高等数学课程融入数学建模思想的必要性
随着全国大学生数学建模竞赛的影响力的不断扩大,数学建模的重要性被越来越多的教师与学生认可。以微积分为主要内容的高等数学课程是一门逻辑性强、结构严谨、理论性较强的学科,也是不少金融财经类专业学生觉得比较难学的一门课程。高等数学重理论分析、逻辑推理这对于学生逻辑思维能力的培养是十分有好处的。遗憾的是,该课程比较轻视基本概念的实际应用背景,与实际生产生活的联系不足,这使得有一部分学生会产生数学无用论的思想。
20年,李大潜院士在“大学数学课程报告论坛”上指出“如果割断了数学与外部世界的联系,割断了数学与现实生活的关联,单纯从概念到概念,从公式到公式,数学就成了无源之水、无本之木,数学的教学就必然枯燥乏味,失去活力,所传授的知识就不可能是全面深入的,更不可能给学生以数学的思想和方法与精神实质的启迪[3]。”
如何将数学建模的思想与方法更好地介绍给学生,如何让学生学以致用,怎么样将数学建模的内容与传统的高等数学课程相结合,以及采取什么样的考核方式更为合理,目前并没有十分成熟的理论体系。
数学建模本质上是一门艺术,要将这门艺术与历史悠久的微积分更好地融合在一起,并且充分体现出授课对象的专业特色,这无疑是摆在所有数学教育工作者面前的一个难题。作为数学教师一定要多观察、多思考、多交流、勇于创新,努力将数学建模内容合理引入高等数学的教学过程中,努力构建一座高等数学与金融财经类专业的紧密联系的桥梁。
高等教育应该及时反映并服务于社会发展的实际需要。在高等数学的教学过程中,适当增加数学建模内容的教学,即顺应时代发展的潮流,也符合教育改革的要求[2]。
三、数学建模思想融入高等数学教学中的内容及方法
(一)培养兴趣
金融类专业在招生时,一般文理兼收。金融类专业的学生和理工科的学生相比较,数学基础略显薄弱。因此,在高等数学授课时,很显然不能把门槛抬得过高,要因材施教,循序渐进,逐步引导。对于金融类专业的学生,在讲授概念时,应该尽可能直观直接,可以首先使用形象的,甚至是不太严格的描述,让学生能直观形象地思考和理解。例题和习题的讲解应多采用源自客观世界,如自然科学、经济管理领域和日常生活领域中的实际问题,希望以此来提高学生学习高等数学的兴趣,让学生切实感受到高等数学的重要性。只有让学生感到学习不难了,能懂了,并且所学内容是与他们日后的生活与工作密切相关的,学生才可能有学下去的兴趣与动力。
(二)学生想象力的培养
用建模的方法解决实际问题,第一步需要用数学语言概括所需要分析的问题,只有在成功建模以后,才能用所学知识去解决问题。这就要求学生除了基本功扎实以外,还需要拥有广博的知识和丰富的想象力。因此,高等数学教师在平时授课过程中,就应该利用一些开放性的问题,给学生以指引,有意识地培养学生的想象力和洞察力。
(三)将案例教学融入到高等数学教学过程中
1.案例教学内容的选择。在高等数学课堂中,可以通过案例教学来讲解数学建模,提高学生分析问题和解决问题的.能力。例如,在讲到函数概念的时候,可以为金融、财经、管理类学生介绍经济学中常见的成本函数、收益函数、利润函数、需求函数、供给函数,并引导学生通过分析讨论,在实际应用背景下去求收益函数、利润函数,讨论盈利与亏损问题。
在为学生介绍第二个重要极限公式的时候,面对金融财经类专业的学生,可以弱化此公式的证明过程,将授课重点放在公式的应用上。现实生活中,很多人会问,资金是存在银行好,还是放在支付宝里好,那么这两种存款计息方法的主要区别在哪里呢?目前,银行大多采用单利计息的方式,而余额宝采取的是复利计息的方式,也就是俗称的利滚利的,那么利滚利又怎么具体用数学公式的形式体现呢?引入到这里的时候,教师则可以按照不同的支付方式结合第二个重要极限公式,进行建模,推导单利计算公式、复利计算公式以及连续复利计算公式。推导完公式之后,还可以假定给学生一定的投资资金,让学生结合实际社会生活分组讨论,自主选择心仪的理财储蓄方式。作为高数教师,大家应该都深有体会,如果不介绍实际应用的例子,大部分学生会对第二个重要极限公式的学习产生茫然感,迷惑感,学生不知道学习这个枯燥复杂的公式有什么作用。但当我们将公式进行包装以后,与大家共同关心的热点问题相结合起来,枯燥的数字和公式也能变得有趣。
再例如,当讲授到导数的应用时,面对金融财经类专业的学生,我们需要相应地选择适合学生专业的案例。在为学生介绍了边际分析、弹性分析以后,我们可以结合目前热点的奢侈品购买问题,尝试让学生在实际背景下,去计算生活必需品和奢侈品的需求弹性,简单探寻商品的定价政策。
定积分的应用一直都是高等数学的授课重点,但是大部分教材的相关内容主要局限在利用定积分去计算平面图形的面积、旋转体的体积等问题上。作为面向金融财经类学生的高等数学,在授课的时候,可以适当弱化在体积方面的应用,增加和学生专业联系更紧密的内容。比如,可以假设某企业投资项目时,初始投入为X元,该企业在未来的N年中可以按每年Y元的收入获得均匀的收益。如果年利率为r,可以让学生尝试首先建模,再尝试用定积分去求N年后企业收入的现值。
由于数学建模内容涉及的知识面十分广泛,这无疑会对教师和教学单位提出更高的要求,教学案例的收集和研究是一个值得广泛关注的问题,没有好的、与时俱进的案例,何来能吸引学生的数学建模的教学?相关教学单位可以通过奖励机制比如设计教改基金项目等措施,鼓励数学模型与案例的收集建设,为广大数学教师的发展提供有力支持。
2.案例教学中教师角色的扮演。在高等数学的案例教学过程中,应该确立学生的主体地位,教师应该充当主持人即引导者的角色,引导开放讨论。教师应把握和掌控讨论进度、次序,要向学生说明讨论目的、讨论要求,对学生进行适当必要的引导,避免出现冷场、跑题等现象。
四、数学建模思想融入高等数学教学的教学手段和考核方式
(一)借助现代化教学手段进行教学
在高等数学的教学过程中,引入数学建模的内容,数学软件一定是不可缺少的。目前,应用最广泛的相关软件莫过于Matlab,Mathematica和Lingo等等。教师应对各种软件的操作进行示范,同时教学单位也应为学生提供上机操作的时间、场所、软件等必备条件。当然,这也对主讲教师与教学单位提出了与时俱进的高标准、高要求。
(二)考核手段
目前高等数学的考核方式大多数为重理论、轻应用的笔试,这必然造成学生盲目地为了追求高分,忽视自身应用能力的提高。要充分发挥高等数学课程在金融类专业中的作用,就需要在一定程度上进行高等数学课程命题改革建设。当然,改革也并不是要全盘否定过去的评价机制,可以尝试命题中传统题型与创新题型共存,尝试性地将数学建模意识融入命题中,在不忽略学生基础的同时,培养学生分析与解决问题的综合运用能力。
五、结束语
高等数学的教学要适应经济快速发展的潮流,更好地服务于社会,把数学建模思想融入其中不失为一个正确的选择。虽然此方法仍在探索中,但相信对同行在今后的教学中会有一定的启发。
【数学建模论文】相关文章:
数学建模论文07-06
数学建模论文模板07-22
数学建模论文模板02-12
数学建模论文范本01-01
数学建模论文(精选5篇)01-02
数学建模A优秀论文02-19
简单的数学建模小论文09-02
关于数学建模论文致谢词03-19
数学建模论文格式规范12-11
数学建模论文格式范文01-01