电石炉气在循环经济的综合利用论文
[摘要]本文简述了电石炉气的特性和利用价值,从电石炉气成分主要为CO和H2(约90%)可以看出,电石炉气可以作为燃料及化工原料来利用。然而简单地将电石炉气作为燃料使用并没有使其价值最大化,而以其为原料发展高附加值的化工产品则更有意义。因此,本文重点介绍了利用密闭电石炉尾气生产碳一化工产品的工艺,并与煤化工中煤造气工艺进行对比,发现以电石炉气为原料的工艺不仅可以全部利用电石炉气中的有效气体成分,还减少了碳的排放量,减轻了对环境的污染,同时可以有效降低碳一化工产品的生产成本和建设投资。
[关键词]电石炉气;循环经济;碳一
电石是有机化工的基础原料,由它制得的乙炔可生产醋酸、醋酸乙烯、聚氯乙烯、聚乙烯醇、乙炔炭黑等一系列数千种有机产品。在国内电石行业,无论是全密闭式电石炉、内燃式半密闭电石炉还是开放式电石炉,其尾气一直以来没有得到很好的利用,有的甚至直接放空烧掉,造成了资源的极大浪费。
1电石炉气特性及利用价值
1.1电石炉气特性
使用密闭炉生产电石,每吨电石副产炉气量约400Nm3[1-2],其典型组成及物理性质如表1所示。从表1可以看出,炉气中含尘量大,具有黏、轻、细、不易捕集等特点;炉气内含微量焦油,它在温度大于225℃时呈气态,在温度小于225℃时容易析出,会使除尘布袋黏结堵塞;炉气本身温度很高,同时含有难以除净的大量粉尘,治理难度比较大,在利用前需要对炉气进行充分的净化处理。
1.2电石炉气利用价值
从电石炉气成分可以看出,炉气中含有大量的CO和H2,是很好的燃料和化工原料,利用好这部分气体可以产生巨大的经济效益和社会效益。以我国2017年电石产量2500万吨计算,副产的电石炉气总量达到100亿Nm3左右,如能全部回收,可得到约75亿Nm3CO和7.5亿Nm3H2。因此,炉气净化利用对实现能源回收利用、降低生产成本、提高经济效益,都具有重要的意义。
2电石炉气在化工中的利用及经济性分析
目前,部分企业的电石炉气只是经过简单处理后,作为燃料烧石灰、烧锅炉等使用,并没有将炉气价值最大化利用。电石炉气的主要成分是CO和H2,在经过深度净化处理后,可利用CO和H2发展后续高附加值化工产品,可用于生产合成氨、甲醇、乙二醇、二甲醚、甲酸钠等较高附加值的化工产品[4],目前国内已成功建成生产甲酸钠、合成氨、乙二醇的装置,详见表2。
2.1合成氨和甲醇
[3]根据原料气分析以及物料平衡计算,电石尾气中氮气的体积分数约为5%,如单产甲醇,5%的氮气将作为无效气被放空,增加了压缩机的无效功;如单产合成氨,需要向系统中补充氮气,新增制氮装置,增加投资。综合考虑,如果采用以醇-氨联产工艺,即甲醇生产中串入合成氨生产,将炉气中的N2与H2合成氨,避免了合成甲醇过程中排放惰性气体而造成大量有效气体损失。醇-氨联产工艺不仅最大限度地利用了电石炉气,减少了排放量,又创造了经济效益。醇-氨联产工艺的流程示意图1所示。以电石炉气为原料,醇-氨联产工艺有以下几个优点:(1)充分利用了电石炉气中的气体成分,炉气的利用率更高;(2)利用甲醇合成后的尾气副产液氨,既最大限度利用了电石炉气,又创造了经济效益;(3)能耗低,与国内煤头制甲醇工艺相比能耗明显降低;(4)成本低,与国内煤头制甲醇工艺相比成本明显降低。
2.2乙二醇
乙二醇合成气为高纯度的H2(99.9%,vol)和CO(99%,vol),且H2和CO的体积比约为1.95。若以电石炉气作为乙二醇合成气,与以煤为原料相比,省去了煤制气的过程,消耗低,原料成本大幅下降,无疑是一种优于单纯以煤为原料的生产乙二醇的原料路线。以电石炉气为原料合成乙二醇的工艺流程见图2。2中可以看出,电石炉气只需要经过适当的变换及分离制氢后即可作为乙二醇的原料,不需要煤造气过程,可以节省大量的投资,具有良好的经济效益和社会效益。从国内电石炉气的在化工产品上的利用情况来看,新疆天业集团已经取得了成功。新疆天业以电石炉气为原料,采用煤制乙二醇技术,于2011年7月在新疆石河子开工建设了25万吨/年煤制乙二醇项目一期工程,规模为年产5万吨乙二醇。一期工程在2013年1月份建成并成功产出优等品乙二醇,产品纯度均超过国标优等品标准。在一期获得成功的基础上,二期工程20万吨/年乙二醇于2013年5月开工建设,并于2015年9月建成投产。
2.3聚氯乙烯
[4]除了在碳一化工中利用外,在烧碱-PVC生产路线中,电石法PVC有两个重要的化学反应过程:(1)氢气和氯气反应合成氯化氢;(2)氯化氢和乙炔反应合成氯乙烯。在合成氯化氢过程中,为了避免氯化氢中的游离氯含量过高遇乙炔发生爆炸,参加反应的氢气一般过量10%左右。但电解氯化钠时,产生的氯气和氢气量是相同的,这样就需要过量的氢资源。而氯碱企业一般靠生产液氯来平衡氢气的不足,或者采用如水电解制氢或天然气制氢来补充氢气,这样都会带来投资增加和生产成本上升的问题。而从电石炉气成分可知,炉气中除含有体积分数80%左右的CO外,还有体积分数5%~10%的H2,这样可将炉气回收后经过等温变换、变压吸附等工艺分离出H2,用于合成氯化氢,剩余的CO可以继续作为碳一化工的原料来利用。炉气回收利用工艺流程如图3所示。在氯碱行业利润普遍不高的情况下,炉气回收利用不仅降低了电石生产成本,而且为PVC生产提供了氢气,具有显著的经济效益。
2.4炉气回收利用的`经济性分析
采用煤与电石炉气为原料生产乙二醇合成气,主要的成本差异体现在合成气的原料气制备上,因此主要比较煤制合成气成本与电石炉气做为合成气处理成本。2.4.1比较前提(1)生产相同规格和相同量的合成气(H2+CO);(2)煤制气按水煤浆气化工艺考虑;(3)电石炉气按项目外供给,按0.3元/Nm3计价;(4)比较范围截至合成气的原料气,即不考虑后续变换、分离等。2.4.2消耗比较基于2.4.1的比较前提,对煤制气和电石炉气生产合成气的过程进行计算和分析,得到两种工艺过程原材料消耗和公用工程消耗情况,如表3所示。从表3中明显可以看出,采用电石炉气为原料,原料气直接由电石厂供应,消耗已计入电石生产中,因此对于化工装置来说原料气是已经制备好的;而采用煤气化,在造气环节要增加公用工程消耗和原料煤消耗,对项目所在地的煤资源保证有要求,同时还需要为煤气化配套建设公用工程。2.4.3成本比较根据表3的消耗情况可知,电石炉气为原料气只需要计算原料电石炉气的成本,实际上电石炉气是电石生产副产品,因而其成本可认为是0。本比较考虑电石炉气从项目外电石厂外购,需按购买价计入原料气成本。成本比较结果见表4。从表4的比较结果来看,采用电石炉气为原料,每1000Nm3合成气成本可降低200元以上,折每吨乙二醇成本下降500元左右,成本降低非常显著。如果电石炉气能够实现内部供给的话,则电石炉气成本可以忽略,合成气成本下降更为可观。2.4.4投资比较因合成气来源不同,投资差异会比较大。对煤制气与电石炉气两种原料过程进行了投资差异上的比较估算,其比较结果见表5。从表5可以看出,若煤制气投资基准值为0,以93750Nm3/h(可满足30万吨/年乙二醇生产)合成气规模计算,则采用电石炉气为原料一次性投资可减少约9.5亿。
2.5电石规模的影响
虽然电石炉气作为合成气原料,无论从投资上还是运行成本都较煤制气路线要低很多,但要利用好电石炉气还要看电石装置规模的大小。例如,利用电石炉气生产甲酸钠,10万吨/年电石可配套7万吨/年甲酸钠装置;而利用电石炉气生产合成氨、甲醇、乙二醇等高附加值的化工产品,10万吨/年电石仅能配套3.6万吨/年甲醇或合成氨装置。如此小的化工装置很难产生经济效益,相当于利用了电石炉气的资源,但在配套建设的化工装置上多消耗了能源,使电石炉气回收利用的社会、经济、环保、节能效益大打折扣。因此,利用电石炉气必须要考虑电石装置规模。目前从新疆、内蒙等地电石企业来看,规模一般都在60万吨/年以上,如新疆天业电石产能已达到200万吨/年以上,这样的规模可以为化工生产提供足够的原料气。所以,若新建碳一化工项目无充足的电石炉气,可考虑与周边大型电石企业合作,由电石企业向化工企业提供电石炉气,从而实现资源互补,循环利用。
3结论
综合以上分析,利用电石炉气来生产化工产品,无论从一次性投资还是产品成本上都优势明显。电石炉气的开发利用已经引起了越来越多的关注,尤其是在化工领域已经取得了重大突破。电石炉气在碳一化工产品中的应用,目前行业内已经获得了成功,如果逐步推广到更多的化工产品中将会大大降低相关产品成本和投资,节能减排,提高经济效益,是循环经济发展的一大亮点。此外,除了生产电石外,冶金行业中生产铁合金、工业硅、黄磷、刚玉等过程都会产生一氧化碳为主的炉气,且其炉气排放量大约是电石炉气的两倍。如果将电石炉气在化工产品上应用成功的范例,推广到整个冶金行业,将对整个国民经济能源节约、资源利用、环境保护有着重大贡献。
【电石炉气在循环经济的综合利用论文】相关文章: