《泰勒公式及其应用》的开题报告

时间:2024-09-13 01:05:26 开题报告 我要投稿

《泰勒公式及其应用》的开题报告

  《泰勒公式的验证及其应用》的开题报告

《泰勒公式及其应用》的开题报告

  关键词:泰勒公式的验证 数学开题报告范文 中国论文 开题报告

  1.本课题的目的及研究意义

  目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

  研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。

  2.本课题的研究现状

  数学计算中泰勒公式有广泛的应用,需要选取 点将原式进行泰勒展开,如何选取 使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

  3.本课题的研究内容

  对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。

  本课题将从以下几个方面展开研究:

  一、介绍泰勒公式及其证明方法

  二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。

  三、结论。

  4.本课题的实行方案、进度及预期效果

  实行方案:

  1.对泰勒公式的证明方法进行归纳;

  2.灵活运用公式来解决极限、级数敛散性等问题;

  3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径 。

  实行进度:

  研究时间为第 8 学期,研究周期为9周。

  1.前期准备阶段:

  收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。

  2.研究阶段:2010年 12月— 2011 年 4 月

  3.第一阶段:初期 ( 2010年12月 1日- 2011年3月15 日)

  第二阶段:中期 ( 2011年3月16 日- 2011年4月 15日)

  第三阶段:结题 ( 2011年4月 16日- 2011年4月 30日)

【《泰勒公式及其应用》的开题报告】相关文章:

应用化学开题报告11-21

合作学习应用开题报告12-06

数据库应用实验平台研究开题报告11-16

开题报告 硕士开题报告12-12

应用电子技术专业论文开题报告范文03-17

开题报告格式及开题报告的写法12-03

浅议水平营销及其创新应用11-17

机械设计制造及其自动化论文开题报告范文01-01

计算机应用毕业设计开题报告范文12-10

  • 相关推荐