研究内容及拟解决的关键性问题开题报告

时间:2022-12-09 23:08:49 开题报告 我要投稿
  • 相关推荐

研究内容及拟解决的关键性问题开题报告

  1、立题意义,主要研究内容及拟解决的关键性问题

研究内容及拟解决的关键性问题开题报告

  2、论文主要研究内容:群的cayley图及其hamilton圈及路径的存在性问题,主要是对一些特殊和常用的群进行了归纳与总结.

  3、立题意义:1.将高度抽象的群具体化,变成对应于群的结构的可见模型.2.本文在两个现代重要学科"群论"与"图论"之间建立了联系.3.本文还让我们对群的一些"老朋友"——循环群,两面体群,群的直积,生成元及其运算关系有了进一步的了解与复习.4.更重要的是,研究该问题会让你觉得趣味横生.

  4、解决的关键性问题:将一些特殊的群的图形表示及其hamilton圈及路径的存在性问题进行了归纳与总结,试着从图形中证明我们已熟悉的定理并推出一些结果.对hamilton群中hamilton路径及cayley({(a,0),(b,0),(e,1)}:q4+zm) 中hamilton圈的存在性,对图cayley({(a,0),(b,0),(e,1)}: q8+zm) 中hamilton圈的存在性进行了证明.总结一下有两个生成元组成的无向cayley图及其相关性质,特别的对s6的cayley图及其hamilton圈的存在性进行了讨论.

  5、立论根据及研究创新之处:在本文中引进了群的cayley图的概念并对一些常用的群进行研究及归纳.研究群的cayley图会使我们对抽象的群有形象化的认识,观察一些特殊群cayley图的优良性质.研究该题不仅可以对循环群,两面体群,群的直积,生成元及其运算关系有了进一步的了解与复习,而且觉得十分有趣.

  研究创新之处就是将特殊群的一些cayley图表示出来,并且通过图来观测群与群之间的关系(比如群的直积),对一些特殊群的hamilton圈及路径的存在性进行证明与推广.比如hamilton群,q4+zm, q8+zm,s6的cayley图及其hamilton圈的存在性.

  6、考文献目录

  1蒋长浩,图论与网络流,北京,中国林业出版社,XX.7

  2 i.grossman w.magnus, groups and their graphs

  3 igor pak and rados radoicic, hamilton paths in cayley graphs

  7、究工作总体安排及具体进度

  2月初——2月底将林老师给与我的材料进行研究

  3月初——3月中旬查阅相关资料

  3月下旬定下论文方向,并开始定稿.

  4月初定好初稿,在林老师的指导下进行修改和纠正.

  5月上旬论文完成.

请继续阅读相关推荐:毕业论文    应届生求职

毕业论文范文查看下载      查看的论文开题报告     查阅参考论文提纲

查阅更多的毕业论文致谢    相关毕业论文格式       查阅更多论文答辩

了解相关论文写作      查阅更多毕业论文参考文献

【研究内容及拟解决的关键性问题开题报告】相关文章:

课题研究开题报告11-21

研究生开题报告06-30

研究性开题报告12-12

毕业论文开题报告的内容05-05

开题报告的基本内容及写法10-21

研究性学习开题报告06-17

教育课题研究开题报告06-20

研究生开题报告(15篇)02-06

研究生论文开题报告写05-03

研究生开题报告15篇07-19