在数学教学中学生创新思维能力的培养
创新教育是基础教育面临的重要任务,培养创新型人才必须从基础做起。在大力提倡推进素质教育的今天,作为一个教育工作者就必须把培养学生创新思维视为己任,在教学过程中,结合教材,着力于培养学生的创新思维能力。因此,发挥数学学科的思维功能,显得尤为重要。如何培养和训练学生的创新思维能力呢?我认为可从以下几个方面入手:一、创设问题情境,激发创新兴趣
俄国心理学家鲁宾斯坦说:“思维通常是由问题的情境产生的,并且以解决问题的情境为目的。” 兴趣是最好的老师,是调动学生积极性的一种“能源”,是激发学生学习的先决条件和首要问题。只有学生在学习中产生一种迫切探求新知的欲望,他们的创新能力才能得以发挥,而学生学习的主动性和创造性与教师自身思维的灵活性和丰富性密切相关。因此教师自身的思维也应具有创造性,并以创新者的身份进入设置的课堂情境,为学生提供敢想、善思的创新学习的良好情境。在数学教学中,创设问题情境对激发学生的学习兴趣是很有帮助的,教师在课前准备一些适合本课教学的情境,能把学生从书本一下子拉进实际生活中,并适当提出一些问题让他解决,学生的兴趣一下子就被调动起来了。学生自己动起来,学习的氛围有了,知识也就很容易接受。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,形成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
1.从学生感兴趣的问题出发,创设问题情境。
例如,在探究几何体表面的最短路径问题时,可设置下列问题:一只蚂蚁在圆筒外壁的A点,想吃到圆筒内壁的B点处残留的蜂蜜,怎样走路程最短?由此激发学生的求知欲望。
2.从学生的生活实际出发,创设问题情境。
例如,在学习“平方根”一节时,教师提出以下问题:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?若面积为5dm2,则边长应为多少呢?由此,就引出了平方根的概念。
选择有意义的现实问题创设情境,更能培养学生良好的思维品质和应用意识。可见,问题是思维的灵魂,创设良好的问题情境是激发思维的有效方法。教师要善于把握学生的思维特点,在教学的重点、难点或关键处设计问题,创设问题情境,以激发学生的求知欲望,并启发学生的思维,提高学生自主解决问题的能力。 二、诱导学生探索,培养创新思维
解决问题的关键是教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同发展的过程。”弗赖登塔尔曾经说:“学一个活动最好的方法是做。”在教学中,教师既是知识的讲述人,更是学生学习的引路人。教师要引导学生主动发现、主动研究、主动探索;要注重开拓学生视野,鼓励学生从不同的方面,不同的角度探索解决问题的途径;要鼓励学生多提问题,阐述个人的独到见解,学会分析问题和解决问题,有意识地培养学生的创造性思维能力。
教师在教学中,把教给学生知识的过程,变成引导学生自己探究、寻方法的过程,对培养学生的创造性思维能力很有帮助。
三、一题多解,培养学生的发散思维
发散思维是从一点或一个问题出发,知识进行放射性联想,向四面八方探索。一题多解既加深学生对知识的全面掌握,也是培养学生发散思维能力的有效途径。让学生比较哪种方法简练,并对学生想出第三种证法给予高度评价,使学生拥有成功的喜悦,享受到数学思路的创新美,借此调动学生深钻多思的学习积极性,在某种意义上达到该节课的情感目标。另外,有意通过一题多变、一题多答等具有发散性的题型进行训练、培养学生思维的创新性。在实际教学中,让学生结合实际问题自编题目,也有助于创新性思维的培养。对于学生思维能力,特别是创新性思维能力的培养,是一个很复杂而系统的领域,还需要我们在教学中不断探索、总结,再探索、再研究才能取得很好的效果。
四、运用点拨教学,培养独创思维
创新思维独创能力指思考问题时敢于标新立异,独辟蹊径,深挖出与众不同的能力。在数学教学中,我经常注意运用激发性语言给学生及时的点拨,鼓励他们大胆地提出自己的见解。我还想方设法给学生提供机会,让他们进行创造性的练习,努力培养学生的思维独创性。学生思维具不具有独创能力,这是相对而言的,但不管怎么说,具有思维独创能力的学生毕竟只占少数,教师应予以特别重视,因为独创性思维是创新思维发展的最高表现形式,也是创新素质培养的重点目标。
五、打破思维定势,培养逆向思维
所谓逆向思维(又称反向思维),是善于从反面的立场、角度去进行思考,当某一思路出现障碍时,能够迅速地运转移到另一思路上去,从而使问题得到解决的思维过程。判断一个学生思维能力强不强,依据之一就是考查学生逆向思维能力灵活不灵活。我在教学每一节内容时,除了向学生进行一定程度的正向思维训练外,还不失时机地设计逆向性的问题,教会学生从一个问题的相反思路上去思考,探求解决问题的方法途径,使学生的正向思维、逆向思维发展相互促进。例如:已知方程 至多有一个负根,求实数k的取值范围。大多数学生在解答时采用分类讨论的方法,即对方程有一负一正,两个正根,没有实根,进行讨论,非常难,又非常复杂。教学中应引导学生逆向思维,“至多有一个负根”,反而非常简单,有两个负根,只需求出使方程有两个负根的k的取值范围,然后排除这种情况,问题就解决了。
总之,时代呼唤教育,教育必须培养学生的创新精神。新的课程标准明确提出,以全面提高学生的科学素养为宗旨,以培养学生的创新精神为重点,以促进学生学习方式为突破口。因此,只有教师在教学中真正树立创新意识,学生的创造意向才能得以培养,其创造个性才能得以弘扬,才能更好地适应教育发展的需要,为国家培养更多的开拓创新的优秀人才。
【在数学教学中学生创新思维能力的培养】相关文章:
浅谈高中地理教学中学生创新思维能力的培养12-06
中职数学教学中学生创新能力的培养03-05
数学教学中如何培养学生的数学思维能力12-05
大学数学教学与创新能力培养12-06
在数学教学中培养学生的思维能力12-12
小学数学教学中学生创新意识的培养之我见12-02
中学英语教学中创新思维能力的培养11-21