- 相关推荐
高温炭化法制备竹炭的研究分析
摘要:采用高温炭化法制备竹炭。研究了温度、保温时间和升温速率对竹炭吸附性能的影响,并通过N 吸附等温线对其孔结构进行表征。结果表明,随着温度、保温时间的增大,竹炭的亚甲基蓝吸附值和碘吸附值呈现逐步增长的趋势;升温速率的提高,促进了炭素前驱体石墨化程度的提高,不利于竹炭孔隙结构的发达;高温炭化法可以制得微孔、中孔、大孔较发达的竹炭。在较佳的实验条件下,高温炭化法可制得竹炭的亚甲基蓝吸附值和碘吸附值分布为280mg/g和947.3mg/g。
关键词:高温炭化,竹炭,吸附
Abstract: Preparation of high-temperature carbonization charcoal. The effects of temperature, holding time and heating rate on charcoal adsorption properties, and characterized by N adsorption isotherm of its pore structure. The results show that with the increase of temperature, holding time, methylene blue adsorption and iodine adsorption charcoal show a gradual upward trend; the heating rate increasing, promoting carbon precursor graphitization degree of improvement is not conducive charcoal pore structure developed; high temperature carbonization can be obtained microporous, mesoporous, macroporous more developed charcoal. Under the preferred experimental conditions can be obtained by high-temperature carbonization of methylene blue adsorption and iodine adsorption charcoal distribution 280mg / g and 947.3mg / g.
Keywords: high-temperature carbonization, charcoal, adsorption
竹材作为一种多孔介质材料,热解后形成的竹炭具有特殊的孔隙结构,且有一定的比表面积,广泛用于调湿、有害气体的去除以及水体中有机污染物和重金属的去除。近年,随着竹材加工工业的发展,在其加工过程中,将出现很多竹刨花、竹屑等加工剩余物,企业一般将其作为燃料,如果将竹材及其副产品用于制备竹炭、竹活性炭等环节友好型吸附材料,可为竹炭、竹活性炭的制备提供良好的原料来源。
因竹炭来源广、成本低廉、吸附性能良好,越来越多的研究者对竹炭的制备及吸附性能进行了研究。戴嘉璐等采用竹材为原料,经高温炭化制得竹炭研究结果表明,竹炭结构是含石墨微晶的无定型碳结构,基本保持竹材的微观形态,导管内壁存在类似层状石墨结构。朱江涛等研究了30℃下竹炭对苯酚溶液的吸附动力学,结果表明,竹炭对苯酚的吸附动力学过程可以用准二级模型进行很好的描述。蒋新元等利用不同部位的竹材如竹蔸、竹节和竹枝制备竹炭,并对其进行表征。S.Y.Wang等研究了不同制备工艺条件下,竹炭对水溶液中Pb,Cu和Cr的吸附,结果表明900℃制得的竹炭的吸附性能和比表面积比800℃的高。H.Lalhruaitluanga等研究了竹炭、竹活性炭对Pb的吸附情况,结果表明,竹炭、竹活性炭对Pb的吸附,主要由其表面的–OH,C
single bond
H和C
double bond; length as m-dash
O官能团起作用。KeiMizuta等比较了市售活性炭与竹炭对水溶液中硝酸盐的吸附,结果表明,竹炭的吸附性能对水溶液中的硝酸盐的吸附性能优于市售活性炭。
本研究采用高温炭化的方法制备竹炭,讨论了炭化温度、保温时间和升温速率对竹炭吸附性能的影响,并对其进行表征,以期为竹炭的制备和应用提供理论基础。
1、材料与方法
1.1原料
以南平邵武市产的毛竹为原料(3年生),粉碎、过筛,取粒径0.2~1mm,自然风干后备用。
1.2试验步骤
用日本制KDFS.70型,程序升温炉对竹屑进行炭化,以3~15℃/min的升温速度到4个不同的温度(500~1000℃)并保温2~10h。
1.3检测方法
依据GB/T12496.8-1999,12496.10—1999,测定竹炭的亚甲基蓝吸附值、碘吸附值。采用美国Micrometric公司ASAP2010型全自动比表面积分析仪对竹炭的比表面积进行测定。
表1炭化工艺对竹炭性能的影响
Table1Theeffectofcarbonizationconditions
工艺 得 率(%) 亚甲基蓝 (mg/g) 碘值(mg/g)
500-5-4 32.78 32.5 546.0
600-5-4 26.86 35.5 593.3
700-5-4 21.39 38.5 681.2
800-5-4 17.05 121 823.2
900-5-4 14.71 235 873.9
1000-5-4 8.31 182.5 842.1
900-5-2 17.92 175 725.1
900-5-4 14.71 235 873.9
900-5-6 10.15 280 947.3
900-5-8 7.84 283 972.5
900-5-10 2.06 302.5 1032.8
900-3-4 14.01 212.5 809.4
900-5-4 14.71 235 873.9
900-10-4 15.65 227.5 833
900-15-4 14.32 230.5 819.3 注:500-5-4表示500℃-5℃/min-4h
2、结果与讨论
2.1温度的影响
为了解炭化的温度对竹炭性能的影响,研究以5℃/min的升温速率到500~1000℃,保温4h制备竹炭,结果列于表1。由表1可知,随着炭化温度的升高,竹炭的得率呈现不断下降的趋势,从500℃的32.78%降低到1000℃的8.31%,这是由于随着温度的升高,竹屑热分解反应进行得激烈,烧失增大,得率降低。亚甲基蓝吸附值和碘吸附值呈现先升后降的趋势,在500~700℃时变化不大,700~900℃时,有了较大的增加,分别从700℃的38.5mg/g和681.2mg/g上升到900℃的235mg/g和873.9mg/g,而当温度继续上升到1000℃时,又有所下降。这是由于温度高时,反应进行的比较激烈,能在较短的时间内,生成发达的微孔,但温度过高时,反应进行的太快,反而会使微孔进一步烧失成中孔或大孔。
2.2保温时间的影响
为了解保温时间对竹炭性能的影响,研究以5℃/min的升温速率到900℃,保温2~10h制备竹炭,结果列于表1。由表1可知,随着保温时间的延长,竹炭的得率呈现不断下降的趋势,从2h的17.92%下降到1000℃的2.06%,这是由于随着保温时间的延长,热分解反应进行得越充分,烧失增大,得率降低。亚甲基蓝吸附值和碘吸附值呈现逐渐上升的趋势,其中2~4h有较大的增加,分别从2h的175mg/g和725.1mg/g增加到4h的235mg/g和873.9mg/g,4~6h阶段,也有较大的增长趋势,6h时分别达到280mg/g和947.3mg/g,6~10h阶段,变化较小,基本达到平衡。这是由于保温时间太短,活化反应进行得不够充分,氧气只在物料的表层发生反应,没有足够的时间进入里层进行反应,所以吸附性能比较差。保温时间太长,活化反应进行得比较充分,在孔隙结构生成的同时,也有大量的孔隙结构被烧失,故吸附性能变化不大。
2.3升温速率的影响
为了解升温速率对竹炭性能的影响,研究以3~15℃/min的升温速率到900℃,保温4h制备竹炭,结果列于表1。由表1可知,随着升温速率的提高,得率、亚甲基蓝吸附值和碘吸附值均呈现先升后降的趋势,得率在10℃/min达到最大,为15.65%,而亚甲基蓝吸附值和碘吸附值在升温速率为5℃/min达到最大,分别为235mg/g和873.9mg/g。
这是由于升温速率的提高可使木质原料的热分解加快,气体释放的速率加快,烧失增多,短时间内产生较多合适的游离基,而且气体析出速率增加,促进了炭素前驱体石墨化程度的提高,不利于竹炭孔隙结构的发达。由表1还可知,得率、亚甲基蓝吸附值和碘吸附值随升温速率的升高,变化不大,总体保持平衡,说明升温速率对其影响不大。
2.4N吸附等温线的分析
文本框: 图1 n2吸附等温线fig1 n2-adsorption isotherm
吸附等温线常用来表示吸附系统的平衡状态,还可以用来计算吸附剂的比表面积、孔隙体积和孔径分布等。图1描述了900℃,保温2~8h的竹炭吸附等温线。由图1可以看出,不同保温时间的N吸附等温线的形状相似,氮气吸收量的增加不仅在低相对压力下,而且在整个压力范围内也是明显的。按国际纯化学和应用化学协会(IUPAC)的分类,该类等温线属于Ⅰ型和Ⅱ型的结合型,说明该竹炭具有较发达的中孔和微孔。
由图1明显看出,随着保温时间的延长,竹炭对氮气的吸附能力也随之升高。在相对压力小于0.1时,微孔被完全填充,而随着相对压力的进一步增大,对应的吸附容积也不断增大(该阶段为中孔的填充过程),说明具有发达的中孔结构。当相对压力大于0.9时,氮气吸附量则出现较大的增加,即吸附等温线有“脱尾”现象,说明大孔也较发达。根据以上分析可知,竹炭具有发达的微孔、中孔、大孔结构,且随温度的升高,孔隙结构越发达。
由图1还可知,6h和8h的吸附等温线比较接近,说明这两种条件下制得的竹炭孔隙结构差不多,时间的延长对其孔隙结构影响不大。而2~6h的吸附等温线在对应的相对压力下,有较大的变化,说明在该阶段,随着保温时间的延长,有利于竹炭孔隙结构的发达。
3、结论
(1)随着温度、保温时间的增大,竹炭的亚甲基蓝吸附值和碘吸附值呈现逐步增长的趋势。升温速率的提高,促进了炭素前驱体石墨化程度的提高,不利于竹炭孔隙结构的发达。
(2)根据N吸附等温线的分析,高温炭化法可以制得微孔、中孔、大孔较发达的竹炭。
(3)在较佳的实验条件下,高温炭化法可制得竹炭的亚甲基蓝吸附值和碘吸附值分布为280mg/g和947.3mg/g。
参考文献
1 张文标 ,钱新标 ,马灵飞.不同炭化温度的竹炭对重金属离子的吸附性能[J].南京林业大学学报(自然科学版),2009,33(6):20-24.
2 孙新元, 吴光前, 张齐生.竹炭对微污染水中有机污染物的吸附[J].环境科技,2010,23(1):15-18.
3 张齐生.重视竹材化学利用、开发竹炭应用技术[J].南京林业大学学报,2002,25(1):1-4.
4 戴嘉璐,郭兴忠,杨辉,等.竹炭微结构的研究[J].材料科学与工程学报,2007,25(5):743-745.
5 朱江涛,黄正宏,康飞宇,等.活性竹炭对苯酚的吸附动力学[J].新型炭材料,2008,23(4):326-330.
6 蒋新元,胡迅,李湘洲,等.不同部位竹材制备竹活性炭及其对苯酚的吸附性能[J].林业科学,2009,45(4):107-111.
7 Song-Yung Wang,Ming-Hsiu Tsai,Sheng-Fong Lo,et al.Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboocharcoal[J].Bioresource Technology,2008,99(15):7027-7033.
8 H. Lalhruaitluanga,K. Jayaram,M.N.V. Prasad,et al.Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—A comparative study[J].Journal of Hazardous Materials,2010,175(1-3):311-318.
9 Kei Mizuta,Toshitatsu Matsumoto,Yasuo Hatate,et al.Removal of nitrate?nitrogen from drinking water using bamboo powder charcoal[J].Bioresource Technology,2004,95(3):255-257.
10 Zhonghua Hu,M.P.Srinivasan,Yaming Ni.Novel activation process for preparing highly microporous and mesoporous activatedcarbons[J].Carbon,2001,39(6):877-886.
【高温炭化法制备竹炭的研究分析】相关文章:
微乳化技术在纳米材料制备中的应用研究06-15
浅谈工业废渣制备熔渣改质剂的生产研究论文04-17
股票技术分析系统的研究与实现05-08
中药调剂的问题分析研究论文06-22
跳水训练中形体训练的研究分析05-18
经济法教学实践性模式研究06-15
开题报告的分析思路、研究方法怎么写08-01
欠平衡钻井监测分析系统的研究与实现08-24
功能翻译基础理论研究分析08-05
高职院校学生逃课心理分析及措施研究08-28