用典型事例创设问题情境, 培养学生的开创精神的论文
【关键词】培养,学生,开创,精神,情境,问题,典型,事例,创设,用,
学到微积分部分时,我把牛顿和莱布尼兹及追随者们的生平故事,他们发现及发展微积分理论的过程,他们在数学及其他领域内所做的研究工作与贡献,还有关于微积分发明优先权问题的争论,各个微积分符号的含义、公式的由来,微积分理论在各学科中的广泛应用等穿插在各部分内容中给学生分散讲授.下面是我的一节实验课:定积分的概念.
定积分的概念非常抽象,很难理解,并且得出概念的方式也与以往有所不同,定积分的计算及其他一些内容是本书的难点.如果这一节讲不好,会给以后的学习带来困惑.俗话说“良好的开端是成功的一半”,为了开好这个头,我下了很大的工夫,提前查资料,找寻与本节课有关的内容.本节课我是这样设置的:
大家都喜欢吃苹果吗?
同学们都笑了,不知道老师葫芦里又要卖什么药,但还是说“喜欢”.
我笑着说:“我也特别喜欢吃.”我又问:“那你们知道与苹果有关的非常有名的定理是哪一个?又是谁发明的?”
同学们异口同声地说:“万有引力定律,牛顿发明的.”这时同学们有些阴阳怪气了,是啊,大家都是从小听牛顿的故事长大的,我现在问,他们以为我把他们当小孩了.
我又问:“是啊,同学们都非常熟悉牛顿的两大成就,万有引力定律和光的分析,但他还有一个更大的成就,你们不知道吧?”
这时同学们的胃口被我吊起来了,我顿了一下说:“那就是计算定积分的基本公式——微积分基本公式.那什么是定积分?微积分的基本公式又是怎么样的?又如何运用它计算定积分?这是我们本章所要研究的内容.”我接着讲到:
定积分的概念起源于求平面图形的面积和其他一些实际问题,定积分的思想在古代数学家的工作中就已经有了萌芽,很早以前在许多人的工作中已经形成,但结果都是孤立的和零散的,直到牛顿—莱布尼兹公式,也就是我们刚刚提到的微积分基本公式建立以后,计算问题得以解决,定积分才迅速发展起来并得以广泛应用.因此牛顿和莱布尼兹被称为定积分的奠基人.牛顿和莱布尼兹都是数学史上最伟大的科学家,特别是牛顿被誉为近代科学家的开创者,在科学史上做出了巨大的贡献,他的三大成就——光的分析、万有引力定律和微积分,对现代科学的发展奠定了基础,世人给了他很高的评价.曾有一句话是这样说的:“自然和自然规则在黑暗中躲藏,主说,让人类有牛顿!于是一切被光照亮.”而牛顿却非常谦虚,有人问他成功的秘诀,他说:“如果说我有点成就,没有其他秘诀,唯有勤奋而已.”他又说:“假如我看得远点,那是我站在巨人的肩膀上.”这些话生动地道出牛顿取得巨大成就的奥秘所在,那就是在前人研究的基础上,以现身的精神,勤奋地创造科学的新天地.虽然我们不能人人成为伟人,不能人人成为科学家,但我们要学习伟人的这种精神,在学习上孜孜以求,去发现科学、学习科学并应用科学.
同学们被科学家的精神感动了,我顺势一转,那么课本是如何从两个实例出发,引出定积分的概念?定积分的概念又是怎样的?如何应用它来解决实际问题?我们一起来研究一下:
于是我和学生一起从两个实例出发,通过如何求曲边梯形的面积和变速直线运动的路程,一步一步总结出了解决这种不断变化问题的处理方法,那就是四步:无限分割、近似代替、求和、取极限,从而总结出了定积分的概念,了解了定积分的符号表示,同时也了解了定积分符号的来历,并探讨了把定积分应用于解决实际问题的方法.
所以说,数学就是这样一种东西,它提醒你无形的灵魂,它赋予你所发现的真理生命,它唤起心神,澄清智慧,它给我们的内心思想添辉,它洗涤我们有生以来的愚昧和无知.这个漫长的故事一直伴随着学生对微积分理论的学习,当他们学完微积分时,他们会感到自己是在从17世纪开始,把科学家们对微积分理论的发现、发展及完善等过程重新经历和体验,他们会感到数学不仅不是空洞和枯燥的,而且是现实的,也是美丽的、庄严的,这会使他们学习起来格外有兴致和兴趣,感到学习数学不仅不是一件苦差事,而是一种高层次的享受,会感到学习这些东西有一些庄严感和使命感.
【用典型事例创设问题情境, 培养学生的开创精神的论文】相关文章:
创设问题情境培养问题意识提高创新能力论文12-22
谈数学教学问题情境的创设的论文12-19
教学教学的情境创设论文02-18
初中数学问题情境的创设方式探讨论文02-26
浅谈高中化学创设问题情境教学论文05-07
谈问题情境创设的几个方法01-16
怎样给数学问题创设情境12-06
创设问题情境 激发学生自主探究学习12-04
小学数学创设情境与提出问题的策略论文05-15
英语课堂教学中问题情境的创设论文02-20
- 相关推荐