仿真技术在光纤通信实验教学中的应用论文

时间:2023-03-16 06:20:11 其他类论文 我要投稿
  • 相关推荐

仿真技术在光纤通信实验教学中的应用论文

  摘要:本文将Optisystem和Matlab联合仿真技术引入光纤通信实验教学,学生通过虚拟仿真技术,更清晰直观地进行实验,并且节省硬件设备投资,取得良好的教学效果。

仿真技术在光纤通信实验教学中的应用论文

  关键词:仿真技术光纤通信实验技术应用

  随着通信技术的迅猛发展,光纤通信作为通信专业的一门重要必修课程,在培养通信人才能力的角色中扮演着越来越重要的作用[1]。光纤通信是一门物理学和通信学的交叉学科,其中涉及很多物理学和通信学科的基础理论和基础知识,这给学生学习掌握好这门课程带来很大的挑战。

  光纤通信作为一门工程学科,不仅仅教授理论内容,其实践内容也占有非常重要的地位。由于资金的限制,电信级的设备无法购入,因此光纤通信实验课基本以试验箱为主,再配合其他测试仪器完成实验教学,这种模式存在诸多问题,比如实验设备具有使用寿命、易老化;实验项目方法单一、缺乏灵活性;很难进行综合性开发、二次开发;难以深入了解其内部工作原理等。随着计算机仿真技术的发展,国内外高校越来越重视该技术在实验教学中的应用,目前各大高校已经陆续开始建设虚拟仿真实验室。本文将Optisystem和Matlab联合仿真技术引入光纤通信实验教学中,不仅克服了传统实验教学的弊端,还带来了实验开设的便利性、重复性、精准性等优势,取得了良好的教学效果。

  1。Optisystem仿真系统

  Optisystem是加拿大Optiwave公司推出的一款计算机仿真系统[2],主要用于光纤通信系统的器件仿真、系统设计等。Optisystem提供了良好的可扩展性,可与Matlab进行联合仿真,只需要在仿真系统中添加一个Matlab组件即可,使用起来方便简单[3]。在使用Optisystem与Matlab协同仿真的时候,首先要了解Optisystem的信号输入Matlab工作空间的格式。

  其数据格式如图1所示。

  图1Matlab空间数据格式

  由图1(a)可以看出,Optisystem的信号格式包括“TypeSignal”,字符类型,表示该信号的类型为光信号、电信号或二进制信号;“Sampled”,结构体,Optisystem的信号就包含在该字段当中。“Parameterized”,结构体,参数化字段,表示一些与时间平均有关的量,如平均功率、中心波长、偏振态等;“Noise”,结构体,表示噪声数据;“Channels”,表示该信号的波长,是指中心波长。

  如果选择的是频率抽样信号,则Sampled的数据格式如图1(b)所示。如果选择的是时间抽样信号,则Sampled的数据格式如图1(c)所示。到底是时间信号还是频率信号,由具体问题决定。使用Matlab在时域对信号处理时,就选择时域抽样,否则,选择频域抽样。由图1(b)、图1(c)看出,Smapled包含两个字段,一个是Signal字段,该字段是信号在抽样点的值,另一个是Frequency或Time字段,该字段是抽样点的频点或时间点。

  2。频域的Optisystem与Matlab联合仿真

  为了进一步说明Optisystem与Matlab联合仿真技术在光纤通信实验教学中的应用,用以下例子做说明。本部分是频域的联合仿真,第3部分是时域的联合仿真。在本部分的例子中,我们使用Matlab代码,对连续波激光器的输出光谱进行右移1THz的操作。其搭建的Optisystem系统如图2所示。

  图2光谱右移Optisystem系统

  图2中,连续波激光器发出的激光,输入Matlab组件,使用Matlab组件对其进行频移操作。注意:需要把Matlab组件中的“Sampledsignaldomain”设置为“Frequency”,表示在频域采集信号。把Matlab组件中的“RunCommand”设置为Matlab脚本的名字。以下是编写的Matlab脚本代码,名字为frequench_shift。m

  OutputPort1=InputPort1;

  f=InputPort1。Sampled。Frequency;%输入光信号的频谱

  OutputPort1。Sampled。Frequency=f+1e+12;%输出光谱频率右移1THz

  使用光谱仪分别测试连续波激光器的输出光谱和经过Matlab组件处理过后的光谱,分别如图3(a)和(b)所示。

  (a)(b)

  图3(a)连续波激光器光谱;(b)Matlab组件输出光谱

  通过比较图3(a)和(b)可以看出,连续波激光器的输出光谱中心频率位于193。1THz处,而Matlab组件的输出光谱位于194。1THz处,这说明光谱被Matlab组件右移了1THz。仅仅使用了三行Matlab代码即实现了频移操作,非常简洁方便有效。

  3。时域的Optisystem与Matlab联合仿真

  在时域的Optisystem与Matlab联合仿真中,以光信号的幅度调制为例。搭建的Optisystem系统如图4所示。

  图4Matlab实现的光信号幅度调制

  在图4中,连续波激光器输出的光信号和调制信号输入Matlab组件,Matlab组件完成对信号的光幅度调制。搭建Matlab组件时,需要设置两个输入端口,其中一个电端口,一个光端口。调制信号采用1Gbit/s的伪随机序列,使用NRZ模块产生1Gbit/s的NRZ格式的伪随机序列。把伪随机序列和连续波激光器输出的光信号同时输入Matlab组件,用来产生幅度调制光信号。对于光信号的幅度调制,其数学表达式为:

  Eout(t)=Ein(t)。[modulation(t)]1/2

  其中Eout(t)是输出的光幅度调制信号,Ein(t)是输入的连续波光信号,modulation(t)是调制电信号。

  Matlab脚本代码如下,名字为am。m

  OutputPort1=InputPort1;

  [is,cs]=size(InputPort1。Sampled);

  len=length(InputPort1。Sampled);

  forcounter=1:cs

  OutputPort1。Sampled(1,counter)。Signal=。。。

  InputPort1。Sampled(1,counter)。Signal。*。。。

  sqrt(InputPort2。Sampled(1,counter)。Signal);

  end

  (a)(b)

  图5(a)伪随机序列时域波形;(b)光幅度调制时域波形

  运行Optisystem系统,进行仿真,仿真结束,使用电域示波器(OscilloscopeVisualizer)观测1Gbit/s的伪随机序列NRZ码时域波形。使用光域示波器(OpticalTimeDomainVisualizer)观测Matlab组件的输出时域波形,如图5所示。

  其中图5(a)是伪随机序列的时域波形,图5(b)是经过Matlab处理之后的光幅度调制时域波形。通过对比图5(a)和(b)可以知道,使用Matlab组件实现的幅度调制器,能够正常地把伪随机序列码调制到光波上,从而实现数字光信号的幅度调制。

  4。结语

  本文以Optisystem和Matlab联合仿真为例,介绍了仿真技术在光纤通信实验教学中的应用。通过频域联合仿真和时域联合仿真两个实例,分析了在Optisystem中如何使用Matlab组件进行联合仿真。使用联合仿真技术,可以大大拓展Optisystem的使用范围,学生通过使用仿真技术,不仅能够把课堂上学习的理论知识应用于实践,知其然也知其所以然,还能够巩固学习效果,提高能力,为培养应用型人才打下良好的基础。

  参考文献:

  [1]王秋光,张亚林,胡彩云,赵莹琦。 OptiSystem仿真在光纤通信实验教学中的应用[J]。实验室科学,2015(2)。

  [2]韩力,李莉,卢杰。基于Optisystem的单模光纤WDM系统性能仿真[J]。大学物理实验,2015(10)。

  [3]赵赞善,罗友宏,谢娇。 Optisystem中Matlab Component模块的扩展应用[J]。电信技术,2012(12)。

【仿真技术在光纤通信实验教学中的应用论文】相关文章:

光纤通信技术的应用及发展趋势论文(通用6篇)04-24

问题情景在科学教学中的应用的论文05-06

和声理论在高校钢琴教学中应用论文04-30

数据挖掘在电力企业中的应用论文04-21

英语副语言在跨文化交际中的应用论文05-24

广播电视工程中的接地技术应用论文05-27

移动网络中OTN传输技术的应用论文05-27

信息技术在机械专业教学中的应用论文04-29

原型理论在英语学习和教学中的应用论文05-16

GPSRTK技术在工程测量中的应用研究论文06-05