初二下册每一章数学知识点总结

时间:2024-09-23 00:58:09 初中知识 我要投稿
  • 相关推荐

初二下册每一章数学知识点总结

  数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.下面是小编整理的关于每一章数学知识点总结,欢迎大家参考!

初二下册每一章数学知识点总结

  1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。

  2.其他形式 xy=k (k为常数,k≠0)都是。

  3.图像:反比例函数的图像属于双曲线。

  反比例函数的图象既是轴对称图形又是中心对称图形。

  有两条对称轴:直线y=x和 y=-x。 对称中心是:原点

  3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴

  所作的垂线段与两坐标轴围成的矩形的面积。

  第十八章 勾股定理

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  3.经过证明被确认正确的命题叫做定理。

  我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  第十九章 四边形

  平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;

  平行四边形的对角相等。

  平行四边形的对角线互相平分。

  平行四边形的判定 1.两组对边分别相等的四边形是平行四边形

  2.对角线互相平分的四边形是平行四边形;

  3.两组对角分别相等的四边形是平行四边形;

  4.一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质: 矩形的四个角都是直角;

  矩形的对角线平分且相等。AC=BD

  矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

  2.对角线相等的平行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  菱形的定义 :邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;

  菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。

  2.对角线互相垂直的平行四边形是菱形。

  3.四条边相等的四边形是菱形。

  S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

  正方形判定定理:1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

  梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是 (约为0.618)的矩形叫做黄金矩形。

  第二十章 数据的分析

  1.算术平均数:

  2.加权平均数:加权平均数的计算公式。

  权的理解:反映了某个数据在整个数据中的重要程度。

  而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

  3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  6. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流

  7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

【初二下册每一章数学知识点总结】相关文章:

初二政治下册知识点总结05-17

初二英语下册知识点总结08-27

初二物理下册知识点08-29

初二语文下册知识点08-25

初二地理下册知识点总结09-12

初二数学上册知识点总结12-31

初二下册力学知识点总结12-12

初二力学知识点总结01-19

初二语法知识点总结10-17