初中三角形教学设计

时间:2023-02-27 06:52:04 初中知识 我要投稿
  • 相关推荐

初中三角形教学设计

  教学设计是运用系统方法分析研究教学过程中相互联系的各部分的问题和需求。在连续模式中确立解决它们的方法步骤,然后评价教学成果的系统计划过程。下面是小编整理的关于三角形教学设计,希望大家认真阅读!

初中三角形教学设计

  【1】三角形教学设计

  教学目标:

  1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

  2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

  3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  教学难点:对不同探究方法的指导和学生对规律的灵活应用。

  教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

  教学过程:

  一、 创设情景,引出问题

  1、猜谜语:(课件)

  形状似座山,稳定性能坚。

  三竿首尾连,学问不简单。

  (打一图形名称)三角形(板书)

  2、猜三角形(课件)

  师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

  师:提问第3个图形时问:被遮住的两个角是什么角?

  会是两个直角吗?为什么?

  (引导学生开始对“三角形的内角和是多少”进行思索。)

  3、引出课题。

  师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

  二、探究新知

  1、三角形的内角、内角和

  (1)什么是三角形内角(课件)

  三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

  (2)三角形内角和

  师:内角和指的是什么?

  生:三角形的三个角的度数的和,就是三角形的内角和。

  (多让几个学生说一说)

  2、猜一猜。

  师:这个三角形的内角和是多少度?

  师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3操作验证:小组合作。

  选1个自己喜欢的三角形,选喜欢的方法进行验证。

  (老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

  4学生汇报。

  (1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

  师:有没有别的方法验证。

  (2)剪拼

  a、学生上台演示。

  B、请大家四人小组合作,用他的方法验证其它三角形。

  C、展示学生作品。

  D、师展示。

  (3)折拼

  师:有没有别的验证方法?

  师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

  (鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

  (4)数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  5、巩固知识。

  (1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的.内角和是?度。

  (2)解决课前问题,为什么画不出1个含有2个直角的三角形?

  1个三角形中有没有2个钝角?

  (3)师:我们对三角形的认识已经非常清晰,

  出示2个三角形,生分别说出内角和。

  把两个小三角形拼在一起,问:大三角形的内角和是?度。

  教师:为什么不是360°?

  三、解决相关问题

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  1、看图,求未知角的度数

  2、书上88页10题。

  教师:刚才,我们利用了三角形的什么?

  3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

  求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。

  (3)我有一个锐角是40°。

  4、判断。

  5、求4边形、5边形内角和。

  下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

  如果要求10边形的内角和,你会求吗?你有什么发现?

  (我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)

  四、总结。

  师:这节课你有什么收获?

  五、板书设计:

  三角形的内角和是180°

  ∠1+∠2+∠3=180°

  度量

  剪拼

  折拼

  【2】三角形教学设计

  教材分析:

  教材先让学生动手操作,通过实际度量三个内角的内角和,计算它们的和。由于测量产生误差不容易作出正确结论,再引导学生用实验的方法探索规律。为使所得的结论具有普遍性,使学生信服,教材分别安排对直角三角形、锐角三角形和钝角三角形分别进行实验,再概括出一般结论。接着说明这一结论的应用。

  设计理念:

  本节课的教学设计让学生经历了量,撕,折等一系列活动,从而得出“三角形的内角和是180度”这一结论。学生通过操作和思考,真正经历有效的探究活动,让学生产生探究的需要;给学生空间,让他们自主探究,让学生充分经历提出猜想,进行实验验证的学习过程。在这一过程中,学生从自己已有的经验出发,积极的进行操作,测量,计算,并对自己的结论进行思考,分析,认真倾听其他同学的操作结果和想法,逐步形成了结论,为今后的学习打下了坚实的基础。

  教学目标:

  知识与技能:

  在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

  过程与方法:

  通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

  情感、态度与价值观:

  在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

  教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。

  教学难点:三角形内角和是180度的探索和验证过程。

  教学准备:多媒体课件、量角器、剪刀、各类三角形。

  教学过程:

  一、创设情境,激发兴趣

  图形王国的国王有两名位大将一位叫“大三角形”,一位叫“小三角形”,有一天他们为一点儿小事吵了起来,大三角形吼道:“小家伙整天和我吵,你说我什么不比你大?”。小三角形不服气地说:“你的内角和就不比我的'大”。大三角形理直气壮地说:“我的内角和肯定比你大。”两人争执不休,这时国王回来了:听了他们的诉说,有点糊涂的说“什么是三角形的内角,什么是三角形的内角和?你们的内角和哪个大呢?(板书:内角、内角和)”同学们:你们知道什么是三角形的内角,什么是内角和吗?

  设计意图:这样设计主要是一则童话故事引入,利用学生生活经验,寻找学生最易接受问题的突破点,避免纯数学问题的枯燥,调动学生的视觉,激发学生的学习兴趣,提高学生学习主动参与的积极性。

  二、探究新知

  (一)动手操作探索解法:

  每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验。通过小组合作交流,讨论有几种拼合方法?

  开展小组竞赛(看哪个小组发现多?说理清楚。),各小组派代表展示拼图,并说出理由。

  学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

  归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线(学生讨论,教师点评),为书写证明过程做好铺垫。

  设计意图:让学生看动手拼,使学生直觉感知三角形角的变化与内角和的关系,让学生产生需要,主动去探索,主动去解决问题,主动去证明,充分调动学生,让他们通过观察思考操作验证归纳的过程,主动获取知识,培养个人能力。让学生把自己的证明过程和课件展示的过程对照,这样可以规范学生的证明步骤过程,有利于学生养成良好的思维习惯。

  (二)、探索解法

【初中三角形教学设计】相关文章:

三角形内角和教学设计08-12

初中数学教学设计08-29

初中体育教学设计与反思08-14

人教版初中体育教学设计05-14

初中体育教学设计(精选10篇)03-21

初中语文教学设计与反思08-26

初中英语听说课教学设计06-20

初中英语阅读课教学设计08-23

初中英语教学设计案例(精选10篇)10-20