数学必考的勾股定理考点

时间:2024-09-29 07:40:20 初中知识 我要投稿
  • 相关推荐

数学必考的勾股定理考点

  勾股定理的证明是论证数学的发端,它是历史上第一个把形与数联系起来的定理,即第一个把几何与代数联系起来的定理,也是数学家认为探索外星文明与外星人沟通的最好“语言”。下面是小编整理的关于勾股定理的证明方法,希望大家认真阅读!

数学必考的勾股定理考点

  勾股定理

  内容:直角三角形两直角边的平方和等于斜边的平方;

  勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

  勾股定理的证明

  勾股定理的证明方法很多,常见的是拼图的方法。

  用拼图的方法验证勾股定理的思路是:

  ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

  ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

  勾股定理的适用范围

  勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

  勾股定理的逆定理

  如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.

  ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;若,时,以a,b,c 为三边的三角形是钝角三角形;若,时,以a,b,c 为三边的三角形是锐角三角形;

  ②定理中a,b,c 及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足,那么以a,b,c 为三边的三角形是直角三角形,但是b为斜边.

  ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形

  勾股数

  ①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c 为正整数时,称a,b,c 为一组勾股数。

  ②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。

  勾股定理的应用

  勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题。在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

  勾股定理逆定理的应用

  勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论。

  互逆命题的概念

  如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

【数学必考的勾股定理考点】相关文章:

2017小升初数学必考考点09-25

Linux认证考试必考点07-23

大学英语必考语法考点06-13

法律硕士必考点精选201806-04

药学知识必考点:白芍的功效与作用09-27

2017年护士资格考试必考点及常考点总结07-16

2017年小学语文必考考点大全05-30

高考英语必考词汇大全:数词考点大盘点08-03

护士资格考试每年必考考点201710-07

小升初数学:必考难点详解08-15