- 相关推荐
3D打印技术的现状与未来
3D打印从开始运用于汽车和航天等制造业,到近几年应用于医疗行业,打印出组织器官,并且协助完成手术,3D打印可谓改变了生产观念。在医疗行业,3D打印人造肝脏组织、3D打印人造耳、3D打印牙冠等出现在人们的视野里,3D打印为器官移植提供了多一种可能,给医疗行业带来了新的希望。下面是小编为大家收集的3D打印技术的现状与未来,欢迎大家借鉴与参考,希望对大家有所帮助。
Nature Biotechnology杂志在线发表一篇文章,文章中,研究人员揭示了一种新型的3D打印技术——Integrated Tissue and Organ Printing(集成式的组织和器官打印技术),该打印技术能够构建出结构稳定且具备功能的人耳器官、骨骼和肌肉组织,更重要的是这些组织器官融入微通道,能够维持其继续生长形成血管、软骨等系统,从而发挥功能。
本文就3D打印的现状及进展做一整理,帮助大家梳理一下该技术的进展情况。
【1】创客学生利用自制3D打印牙套矫形成功!
由于3D打印技术可以快速实现几乎任意的形状,所以它在牙科领域中的应用正在快速增加,因为牙科产品是最需要个性化的。但由于研发这种东西需要相当专业的知识和设备(如高精度3D打印机),所以到目前为止,只有达到一定规模的企业才有实力将它们做出来。不过,这种情况可能很快就会改变,因为最近,新泽西理工学院学生Amos Dudley成功利用3D打印自行制作出了一个可用的牙套!
在自己的博客上,Dudley解释了他之所以想得到一个牙套是因为他有几颗牙弯曲的很明显,不够美观。不过由于自己恰好是一名创客,拥有“凡事自己动手”的固执天性,所以他没有去看牙医,而是决定尝试自行解决问题。稍加思考后,他便想到了可行的方案,就是3D扫描自己的牙齿,再3D打印出牙套。
【2】3D打印器官新突破
美国科学家研发出了一款可以打印大尺寸“活”组织的3D打印机,这些组织移植到老鼠身上后能够长时间地存活,并逐渐“融入”到了周围的组织里。这项新的突破使科学家距离3D打印出真正的组织乃至器官,并将其用于临床治疗又近了一步。
1986年,美国人查尔斯·赫尔(Charles Hull)发明了3D打印技术。在随后的30年间,尤其是进入二十一世纪以来,随着材料科学、计算机技术等诸多领域的进展,3D打印技术取得了长足的进步。如今,你能在网上下载到各式各样的3D模型文件,用3D打印机为自己打印一个小摆件。但3D打印技术的应用远远不止局限在给人们的生活增添一抹亮色上:设计师可以用3D打印机把自己设计的作品的模型打印出来,让客户有更加直观的体验;在工业生产上,有越来越多的零部件的生产正在使用着3D打印技术,比如,空中客车公司就宣称其生产的A350 XWB机型的飞机有超过1000种零部件是用3D打印技术生产的;科学家和医生能够用3D打印机根据病人的体貌特征,“定制级”地打印出各类植入物,为病人做移植手术。
【3】3D打印助力精准医疗
现今3D打印技术正如火如荼的渗透到人们生活的各个领域,特别是在医药领域的发展可圈可点。最大的优势就是3D打印技术可以依据病患的特点和要求真正实现个性化制造,成为辅助精准医疗的有力手段。
去年美国食品药品监督管理局 (FDA)己在全球批准首款完全用3D打印制作的药片。这款名为Spritam的药物由美国Apprecia制药公司研制,用于治疗癫痫症患者。该药物获得批准意味着个性化定制药物不再是梦想。一则可以实现药物活性成分的个性化定制。再则可以实现剂量的个性化定制。这种一层一层的打印方法,可以把不同的涂层彼此紧密地结合一起,因此可以把某种物质的最大剂量 ( 据制药厂称,最多1000毫克)置入一粒药片中。这样病人可以吞服少量或较小的药片。三则可以实现形状的个性化定制。这对于不喜欢吃药的儿童来讲可谓是再好不过的办法了,通过3D打印技术打印出各种有趣的形状,来哄宝宝吃药。四则还可通过3D打印技术使药物拥有特殊的微观结构,改善药物的释放行为,从而提高疗效并降低副作用。如Apprecia制药公司应用Zipdose技术推出的可在4秒多就溶解的药丸。
【4】伦敦医生借助3D打印成功完成前列腺肿瘤切除手术
日前,在London Clinic私立医院,Urology Prokar Dasgupta教授成功地为一位来自伦敦的65岁患者Alexander Spyrou先生切除了前列腺肿瘤。在这个手术中,Dasgupta使用了患者带肿瘤的前列腺的3D打印模型。据了解,这个3D打印的前列腺是London Clinic的放射科专家Clare Allen的杰作,它为前列腺手术带来了前所未有的变化,尤其是这个肿瘤是在一个特别重要的位置上。
Dasgupta教授解释说:“在此之前我通常使用机器人来做前列腺手术,这种方法的一个缺点就是缺乏触感。尽管你能够以3D的方式更清楚地看到目标,甚至可以将其放大10倍,但是你失去了最终要的东西——对它的触觉。而对于这个病人,我能在3D模型中感觉到肿瘤,并能感觉到肿瘤是多么接近表面。通常情况下,我们会在心里想象肿瘤的位置,但是在这里,当我远远地坐在控制台边通过Da Vinci机器人进行手术时,这个模型就在我的手上。这个模型能够帮你在癌症手术获得更好地准确性。”
【5】2019年全球3D打印医疗市场销售将达9.66亿美元
3D打印正在多个垂直行业颠覆制造过程,尤其是在医疗领域,3D打印技术的应用导致了更多创新、高效的产品出现。日前,市场研究机构Transparency Market Research在其最新的研究报告中,分析了全球3D打印医疗垂直应用市场,预测从2013年至2019年该市场的年复合增长率将达15.4%。而全球3D打印医疗市场的总销售额也将从2012年3.545亿美元增至9.655亿美元。该报告的题目是《3D打印在医疗应用市场——全球行业分析,大小、份额、增长、趋势和预测,2013年—2019年(3DPrinting in Medical Applications Market - Global Industry Analysis, Size, Share,Growth, Trends and Forecast, 2013 - 2019)》。
该报告称,全球3D打印技术医疗应用市场主要受到一下几个因素的推动:各种3D打印医疗应用不断增加、定制化3D打印医疗产品的增长趋势、来自私人和政府机构的资金、能够扩大医疗应用的技术进步,以及3D打印应用所带来的成本和时间的缩短以及相应的病人护理的改善等。该报告同时显示,3D设计软件公司的并购也将在该市场的未来发展中占据重要地位。然而,缺乏训练有素的专业人员和材料相关的问题有可能阻碍到3D打印在医疗应用市场上的扩展。
【6】Nat Biotech:3D打印革命性进步!打印可移植器官
在最近一项发表在国际学术期刊Nature Biotechnology上的研究中,科学家首次使用3D打印机以活细胞为“墨水”制造出人类真实大小的器官和组织。这些打印出来的机体结构不仅足够大足够结实,可以用于替换机体“原装配件”,还可以进行个性化定制同时具有功能性。
一位研究人员表示:“这项技术能够制造出稳定的符合人类尺寸的任意形状的组织。如果能够得到进一步开发,这项技术还有望用于打印活体组织器官并进行手术移植。”
在此之前,生物打印技术已经可以用于打印一些小型的或者极度简化的器官复制品——比如脑和肾脏组织,因此科学家们就可以利用这些打印器官进行研究,部分替代实验动物,但直到现在仍然没有研究能够打印出大型稳定的可以用作器官移植的活体。最大障碍之一就是如何在打印过程中保证细胞存活以及如何将维持器官运作的所有“配件”组装到一起,比如维持氧气供应的血管结构。
【7】2分钟可打出10厘米3D打印生物血管“成都造”全球首创
3日的新闻发布会上,华西都市报记者罗琴提问成都市委常委、高新区党工委书记吴凯。谈到成都高新区加快自主示范区建设的创新成果时,吴凯以全球首创的生物血管打印机为例,展示了成都国家自主创新示范区的全球领先实力。
3D生物血管打印技术使再造器官成可能,将打印机内装入液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物——这是大家熟悉的3D打印技术,但在成都高新区一家生物科技股份有限公司,科技人员居然可以打印生物血管。
吴凯介绍,该公司推出了全球首创3D生物血管打印机,使器官再造成为可能。该技术拥有完全自主知识产权,不久前还在全国“大众创业万众创新”活动周上亮相,引发广泛关注。
记者了解到,仅用2分钟,该款“成都造”3D生物血管打印机便能打出10厘米长的血管,甚至还包括血管独有的中空结构、多层不同种类细胞。
【8】3D打印助力神经元损伤修复
神经系统疾病一直是困扰着医学工作者的一个难题。而这其中神经元的损伤则是导致神经系统疾病的重要诱因。因此,如果要治疗这些疾病,如何修复受损神经元就成为了摆在科学家面前的头号难题。一直以来,人们都在寻找有效方法来促使受损神经元再生,如今来自明尼苏达大学、普林斯顿大学等机构的研究人员发现3D打印技术或许将在这一问题上发挥意想不到的作用。
科学家们在小鼠实验中证实了这一想法。他们首先利用3D扫描获得了小鼠坐骨神经的轮廓,然后再利用3D打印技术打造出了一个内含能够促进神经元再生化学成分的硅酮类支架。研究人员通过手术将这种支架植入到小鼠的坐骨神经的损伤处,经过10-12周的培养,小鼠受损的行动功能获得了明显改善。
参与这一研究的Michael McAlpine表示,这一结果表明3D打印技术将可以为促进复杂神经元功能的恢复起到重要作用。此前尽管有类似研究证明3D打印技术可以帮助线性神经元再生,但是利用该技术实现如坐骨神经神经元等复杂神经元的感知和运动功能恢复尚属首次。
【9】如何实现3D打印人体组织?
Aspect Biosystems位于加拿大温哥华,是一家屡获殊荣的生物技术初创公司,专门从事3D生物打印和人体组织工程。该公司生产的一款3D打印机,可以通过3D打印制造出具有全面生物功能的人体组织,并可被用于危险或实验性药物的测试中,最终还可能制造出可移植的生物打印器官。
Aspect Biosystems是由加拿大不列颠哥伦比亚大学的一群研究人员创建,启动资金是该校的导师创业组织entrepreneurship@UBC。其独有的生物打印技术是将活细胞材料放入液化的水凝胶,再注入3D打印机中,逐层挤压成特定的形状。制作出的活生物结构将被放置起来进行孵化和培养,让其可以开始作用,创造出拥有生物学功能的活体组织。
近年来,为使动物免于再受伤害,人们对药物测试替代方法的需求变得日益迫切。而且,动物试验对许多疾病和状况会产生不一致或假阳性反应,使得其无法在人体试验中进行模拟。利用生物打印的类人体组织进行药物测试,能消除动物试验固有的不可靠性,并节省药物开发的支出。
【10】Biomaterials:3D打印脑组织 可研究脑疾病
大脑是一个极其复杂的机体结构,其拥有大约86亿的神经细胞,目前研究者所面临的挑战就是创建一种台式脑组织,这样研究者就可以对大脑的结构进行精细化研究了。近日一篇发表在国际杂志Biomaterials上的一项研究报告中,来自国外的研究人员通过模拟脑组织的结构开发出了一种掺入神经细胞的新型3D打印层状结构。
台式脑组织的价值非常巨大,许多医药公司都花费了数百万美元来检测治疗性药物对动物模型的反应,目的就是在临床试验中来证实新型药物的多种作用,但他们并不确定人类的大脑和动物大脑到底差异性有多大。可以精确反应真实大脑组织的台式脑组织或许不仅可以帮助研究药物效应,而且还能帮助研究大脑障碍的发病机制,比如精神分裂症或神经变性的脑部疾病等。
【11】这次3D打印技术要让Ⅰ型糖尿病患者受益啦
对于Ⅰ型糖尿病患者来说,“胰岛移植”这种实验性手术也许可以帮助他们解决胰岛素缺乏的问题。这种手术将健康捐献者的胰岛细胞移植到Ⅰ型糖尿病患者体内,但是带来的副作用则是患者需要终身服用免疫抑制类药物以防止身体对外来植入细胞产生排斥反应。最近,科学家找到了一种新的办法–利用3D打印的支架对移植胰岛细胞进行保护。这种技术展示出了巨大潜力,有望帮助Ⅰ型糖尿病患者更轻松的管理自己的疾病。
1型糖尿病患者很害怕血糖过低,因为这会引发一系列并发症(低血糖症),包括头晕、出汗甚至是失去知觉和死亡等。Diabetes UK数据显示,大约1/3的Ⅰ型糖尿病患者都被低血糖症困扰着。
为了改善胰岛移植手术的成功率和提高Ⅰ型糖尿病患者的生活质量,荷兰特文特大学的研究人员打造了特殊的支架设备保护胰岛细胞。他们的想法是利用3D打印支架设备保护胰岛细胞免受患者免疫系统的攻击,为其更好地发挥功能创造条件。
【12】Nature:3D打印器官复活记
3D打印的出现引起了人们在人工器官方面极大的兴趣,这意味着替换甚至是提高,人类机械。
打印的器官,例如,由新泽西的普林斯顿大学和巴尔的摩的约翰霍普金斯大学的研究者们开发的外耳的原型将在4月15-17号纽约召开的3D打印会议上展出。这个外耳由多种材料打印而成:水凝胶形成一个耳朵样的支架,细胞生长以形成软骨,银质纳米颗粒以形成触角。这个装置仅仅是越来越多,各种各样3D打印的一个例子。
纽约的这次会议,号称是该行业最大的盛会,将有大量的小工具和新奇物品的展出。但同时它也将引起对正兴起的器官打印市场的认真的讨论。
拓展:“3D打印”发展现状及未来发展
一、增材制造发展历程
增材制造又称“3D打印”,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。与传统制造业通过模具、车铣等机械加工方式对原材料进行定型、切削以最终生产成品不同,3D打印将三维实体变为若干个二维平面,通过对材料处理并逐层叠加进行生产,大大降低了制造的复杂度。这种数字化制造模式不需要复杂的工艺、不需要庞大的机床、不需要众多的人力,直接从计算机图形数据中便可生成任何形状的零件,使生产制造得以向更广的生产人群范围延伸。
增材制造技术于20世纪80年代末,实现了根本性发展。1986年,第一家3D公司成立,20世纪90年代,GE、波音增材起步,21世纪,空客增材起步。2009年—2012年,中国商飞增材起步。21世纪开始,随着工艺、材料和装备的日益成熟,增材制造技术的应用范围由模型和原型制造进入产品快速制造阶段,在航空航天等高端制造领域得到规模应用。
二、增材制造技术优势
增材制造技术与传统的减材制造不一样,通过计算机辅助三维设计后一层一层叠加制造。能满足其重量轻、强度高、几何复杂的要求
。其逐层制造的优势使极其复杂的互锁零件无需组装便可投入使用;其产品研发周期短且利于减小库存;其易变和广阔的创新设计空间使个性化需求设计门槛变低。
缩短制造周期:制造速度快,成形后的零件仅需少量后续机加工,可以显著缩短零部件的生产周期,满足快速响应要求。
复杂结构得以实现:能轻松实现复杂结构件的制造,同时还能实现单一零件中材料成分的实时连续变化,使零部件的不同部位具有不同的成分和性能,是制造异质材料的最佳工艺,大幅提升了设计和创新能力。
满足轻量化需求,减少应力集中,增加使用寿命:优化复杂零部件的结构,在保证性能的前提下,将复杂结构经变换重新设计成简单结构,从而起到减轻重量的效果。而且通过优化零件结构,能使零件的应力呈现出最合理化的分布,减少疲劳裂纹产生的危险,从而增加使用寿命。
提升零部件的性能:金属增材制造技术能方便地加工高熔点、高硬度的高温合金、钛合金等难加工材料。金属零件直接成形时的快速凝固特征可提高零件的机械性能和耐腐蚀性能。
具有较高的设计自由度:可以构建出其它制造工艺所不能实现的形状,可以从纯粹考虑功能性的方面来设计部件,且无需考虑与制造相关的限制。
多品种、小批量生产的经济性高:无需生产或装配硬模具,且装夹过程用时较短,因此不存在需要通过大批量生产才能抵消的典型的生产成本,提高材料利用率。
能减少装配次数:通过增材制造所构建的复杂形状可以一体成形,能省去投入到装配工序的工作量、需涉及的坚固件、钎焊或焊接工序,还节省了为装配操作而添加的多余表面形状和材料,大大提升了生产效率。
三、增材制造主要工艺
选区激光熔化技术(SLM),以高能激光束为能量源,对切片分层后的零件模型进行逐层选择性扫描、熔化、成形,最终成形复杂金属零件。主要开展金属SLM工艺研究与验证,形成面向增材制造金属零件的“材料-工艺-设计-测试-评价”的全流程工艺体系,解决传统中小尺寸复杂金属零件制造常见的设计保守、机加量大、难加工等问题,实现减重增效。
激光熔覆沉积(LMD)技术是一种基于送粉的激光增材制造技术,它的工艺特点是激光照射移动的同时,向扫描区域输送粉末材料。针对传统钛、铝、等金属零件制造常见的机加量大、材料利用率低、设计验证阶段开模成本高、加工过量报废等问题,开展金属LMD工艺研究与验证,减少材料和成本的浪费,实现零件成形,同时实现零件的修复和表面改性。
熔融沉积成型(FDM)技术的基本原理是将数模数据薄片化,先利用高温将打印耗材液化,然后通过喷嘴挤压出一个个微型液态颗粒,被挤出后迅速固化,相互形成一条线,打印头来回运动形成平面,层层堆积最终完成打印零件。
选区激光烧结(SLS)技术采用激光器作能源,将粉末预热到稍低于其熔点的温度,将粉末铺平于工作台,激光束在计算机控制下根据分层截面信息进行有选择地烧结,层层烧结成形零件。
四、航空领域对增材制造的需求
创新设计需求:采用增量制造技术,可摆脱二维制造思想的束缚,直接面向零件的三维属性进行设计与生产,大大简化设计流程,从而促进产品的技术更新与性能优化。3D打印技术正在改变我们的设计思维,其在设计自主性和环保方面的优势,使其在飞机制造业中的地位日益重要。对于3D打印技术应用于航空领域,已经不再是局限于是便宜还是快的讨论层面,而是研究整体性能和经济效益的提升所带来竞争力的提升。
快速制造需求:采用增量制造技术,可摆脱二维制造思想的束缚,直接面向零件的三维属性进行设计与生产,大大简化设计流程,从而促进产品的技术更新与性能优化。3D打印技术正在改变我们的设计思维,其在设计自主性和环保方面的优势,使其在飞机制造业中的地位日益重要。对于3D打印技术应用于航空领域,已经不再是局限于是便宜还是快的讨论层面,而是研究整体性能和经济效益的提升所带来竞争力的提升。
快速设计验证需求:缩短设计周期。在工业设计阶段,3D打印技术低成本快速成型的特点可弥补传统工艺制作周期长,成本高的问题,设计师可以随时打印出设计模型验证设计效果。简化加工过程。可直接加工出部分结构较为复杂的非受力件或受力件、舱门装饰件等,简化加工过程。降低成本。3D打印加工过程中对材料的利用相对充分,可以显著降低制造成本。3D打印所特有的增材制造技术则能很好的利用原材料,利用率高达90%。
五、中国商飞公司的发展现状及规划
中国商飞增材制造产品实践始于2009年,通过LMD技术实现了C919橼条和窗框的快速研制,并在C919翼身组合体上安装,通过了静力试验。2012年起与飞而康合作开始SLM工艺的研发与典型件装机认证工作,目前应急和服务舱门37个件,其中29个件是取证构型,正在认证中;2018年起开始在非金属增材方面投入,目前主要集中在利用FDM和SLS工艺进行生产辅助应用支持,包括ARJ21通风窗装饰罩和防冰排气口堵盖等;在结构优化设计方面,目前主要集中在于SLM的工艺协同优化设计,前期也做了铰链臂的拓扑优化设计并实现了打印验证,通过多轮迭代零件从3.5kg减重到2.2kg,实现减重37%。
六、增材制造技术发展趋势
未来,增材制造技术将面向5个“任何”持续发展。即任何领域,任何场所,任何材料,打印出任何形状、任何数量的轻量化产品。例如,将太空“空间站”变为“制造工厂”,通过运载火箭“快递”原材料、增材制造设备和机器人到其他星球,首先实现增材制造设备的自我复制,同时实现基地的打印建造,为外星移民提供条件。
增材制造技术的应用将推动高品质钛粉的不断创新。未来钛粉在航空航天及汽车等领域发展潜力巨大,钛的粉末成型技术将走向个性化、精密化、大型化和轻量化。受技术提高的影响,打印机的成本和价格将大幅降低,使得民用级别增材制造打印机成为现实。
科技创新。为新合金材料的研究提供科研平台,加速中国制造,基于技术革新实现轻量化,从而使得航空航天用构件的制造成本大大降低。探究“3D打印+传统制造”的新模式。采取创新的的方法,加大研究力度,不断进行改进与更新;使两种制造方式并存、互补。
建立航空航天及汽车等方面的增材制造轻量化国家标准,让增材制造产业市场规范化运行。
【3D打印技术的现状与未来】相关文章:
当前家用3D打印机的局限与未来08-21
3D打印混凝土结构施工分析05-19
网络管理技术的现状与发展06-04
影视制作中3D技术的应用09-27
浅析3D音频技术拯救VR的寒冬12-06
论手游媒体的现状与未来10-20
eda技术发展现状06-24
技术经纪人的职业前景与现状01-06
保险公估行业的发展现状与未来方向11-02