- 相关推荐
机床爬行故障原因及解决对策
机床进给系统的运动件,当其运行速度低到一定值(如0.5mm/min)时,往往不是作连续匀速运动,而是时走时停、忽快忽慢,这种现象称之为爬行。下面是小编整理的关于机床爬行故障原因及解决对策的内容,一起来看看吧!
爬行是机床常见而不正常的运动状态,主要出现在机床各传动系统的执行部件上(如刀架系统、工作台等),且一般在低速行时出现较多。运动速度低时,润滑油被压缩,油膜变薄,油楔作用降低,部分油膜破坏,摩擦面阻力发生变化。通常情况下,轻微程度的爬行有不易察觉的振动,显著的爬行则是大距离地跳动。
进给运动中的爬行现象破坏了系统运动的均匀性,不仅使被加工件精度和表面质量下降,也会破坏液压系统工作的稳定性,使机床导轨加速磨损,甚至产生废品和事故。
爬行原因
引起爬行的主要原因,是摩擦因数随运动速度的变化和传动系统刚性不足。机床在实际使用中,爬行现象主要是在传动系统刚性不足,驱动力与负载摩擦阻力波动变化的情况下形成。机床液压系统侵入空气,液压元件间隙增大及机械装置自身原因都可能引起爬行故障。
对策
1.空气混入液压系统引起的爬行及消除方法
液压系统中混入空气是造成液压系统出现爬行故障的根本原因。当空气混入油中以后,一部分溶解到压力油中,剩余的则形成游离状气泡浮游在压力油中,由于空气有很大的压缩性,执行器负载的波动使油液压力脉动,导致气体膨胀或收缩而引起执行器供油量明显变化,从而使“刚性”环节变成“弹性”环节,导致爬行产生。
为了避免空气侵入液压系统,应紧固各管道连接处螺母,严防泄漏。尽可能使进出油管相距远一些,保证进、回油路互不干涉,并将进出油管用隔板隔开。清除附着在滤油器网上的污物,或更换足够容量的滤清器,保证吸油通畅。加足油液并经常检查,保持油液不低于油标指示线,以防止系统吸入空气。采用黏度低的油液,以降低流动阻力,并保证吸油畅通且充足,避免产生空穴现象而使油液中的气体渗出。
2.液压泵或阀类零件间隙引起的爬行及消除方法泵内部零件磨损,间隙过大,引起输油量和压力不足或严重波动而产生爬行。
运动件低速运动时,一旦发生干摩擦或半干摩擦,阻力增加,这时要求液压泵提高压力,但由于泵间隙大而严重漏油,不能适应阻力的变化而使运动件速度减慢或停止。待压力升高达到能克服静摩擦力时,因动摩擦力较静摩擦力小而使运动件向前一跳,压力又降低,运动件速度又减慢甚至停止。这样,反复循环而形成爬行。
在机床液压系统中,当各种控制阀的阻尼孔及节流开口被污物阻塞或阀内零件磨损、滑阀移动不灵活等使压力波动,给工作台的推力时大时小,因而使工作台的速度时快时慢,也可造成爬行。
当液压泵间隙过大时,修复或更换液压泵,减少油泵泄漏。使用滤油器防止杂质进入液压系统,保持油液清洁,定期清洗油池并更换液压油,加强控制阀件的维护保养,以防液压油污染。保证零件的精度达到技术要求,检查各相配零件的配合间隙,研磨阀孔(缸孔),重做滑阀(活塞),使其配合间隙在规定的范围内。
3.摩擦阻力变化引起的爬行及消除方法
静、动摩擦因数的差值大小是产生爬行现象的内因,静、动摩擦力之差越小,临界速度越小,越容易产生爬行。
导轨精度不高、导轨刮研的点数不够且不均匀、导轨表面拉毛、导轨面有锈斑,均可造成局部阻力变化及导轨而接触不良,使油膜不易形成,产生干摩擦或半干摩擦,导致工作台或走刀箱等部件运动摩擦阻力不稳定而引起爬行。在这种情况下,必须修复导轨,使之符合技术要求。
此外,由于制造、安装及磨损等方面的原因引起的液爪缸中心线与导轨不平行、导轨或滑快的压紧块(条)夹得太紧、密封件过盈量过大、活塞杆局部或全长弯曲、液压缸缸体内孔拉毛刮伤、活塞与活塞杆不同轴、液压缸体孔精度不良及活塞杆两端油封调整过紧等缺陷也可引起爬行。当这些缺陷产生不均匀的摩擦力而使运动件爬行时,应逐个检查油缸零件的精度,产加以修复。
数控机床的维护
对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。
首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。
其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。
另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。
当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。
数控机床一般的故障诊断分析
1、检查
在设备无法正常工作的情况下,首先要判断故障出现的具体位置和产生的原因,我们可以目测故障板,仔细检查有无由于电流过大造成的保险丝熔断,元器件的烧焦烟熏,有无杂物断路现象,造成板子的过流、过压、短路。观察阻容、半导体器件的管脚有无断脚、虚焊等,以此可发现一些较为明显的故障,缩小检修范围,判断故障产生的原因。
2、系统自诊断
数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二级管指示故障的大致起因,这是维修中最有效的一种方法。近年来随着技术的发展,兴起了新的接口诊断技术,JTAG边界扫描,该规范提供了有效地检测引线间隔致密的电路板上零件的能力,进一步完善了系统的自我诊断能力。
3、功能程序测试法
功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动变成的方法,编制成一个功能测试程序,送人数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确定和可靠性,进而判断出故障发生的可能原因。
4、接口信号检查
通过用可编程序控制器在线检查机床控制系统的接回信号,并与接口手册正确信号相对比,也可以查出相应的故障点。
5、诊断备件替换法
随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,也可能需要多种方法同时进行。最主要的是根据诊断的结果间接或直接的找到问题的关键,或维修或替换尽快的恢复生产。3数控机床故障诊断实例
由于数控机床的驱动部分是强弱电一体的,是最容易发生问题的。因此将驱动部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分最容易出故障。以CJK6136数控机床和802S数控系统的故障现象为例,主要分析一下控制电路与机械传动接口的故障维修。
如在数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析出现的故障原因得该机床采用变频调速,其转速信号是有编码器提供,所以可排除编码器损坏的可能,否则根本就无法传递转速信号了。只能是编码器与其连接单元出现问题。两方面考虑,一是可能和数控系统连接的ECU连接松动,二是可能可和主轴的机械连接出现问题。由此可以着手解决问题了。首先检查编码器与ECU的连接。若不存在问题,就卸下编码器检查主传动与编码器的连接键是否脱离键槽,结果发现就是这个问题。修复并重新安装就解决了问题。
数控机床故障产生的原因是多种多样的,有机械问题、数控系统的问题、传感元件的问题、驱动元件的问题、强电部分的问题、线路连接的问题等。在检修过程中,要分析故障产生的可能原因和范围,然后逐步排除,直到找出故障点,切勿盲目的乱动,否则,不但不能解决问题。还可能使故障范围进一步扩大。总之,在面对数控机床故障和维修问题时,首先要防患于未燃,不能在数控机床出现问题后才去解决问题,要做好日常的维护工作和了解机床本身的结构和工作原理,这样才能做到有的放矢。
按故障的性质分类
⑴确定性故障
确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便。
确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常.但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。正确的使用与精心维护是杜绝或避免故障发生的重要措施。
⑵随机性故障
随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
按故障产生的原因分类
⑴数控机床自身故障
这类故障的发生是由于数控机床自身的原因所引起的,与外部使用环境条件无关.数控机床所发生的极大多数故障均属此类故障。
⑵数控机床外部故障
这类故障是由于外部原因所造成的。供电电压过低、过高,波动过大:电源相序不正确或三相输入电压的不平衡;环境温度过高:有害气体、潮气、粉尘授入:外来振动和干扰等都是引起故障的原因。
此外,人为因素也是造成数控机床故障的外部原因之一,据有关资料统计,首次使用数控机床或由不熟练工人来操作数控机床,在使用的第一年,操作不当所造成的外部故障要占机床总故障的三分之一以上。
按故障发生的部位分类
⑴主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。主机常见的故障主要有:
1)因机械部件安装、调试、操作使用不当等原因引起的机械传动故障;
2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障;
3)因机械零件的损坏、联结不良等原因引起的故障,等等。
主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。数控机床的定期维护、保养.控制和根除“三漏”现象发生是减少主机部分故障的重要措施。
⑵电气控制系统故障
从所使用的元器件类型上.根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类,“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分数控机床的弱电部分包括CNC、PLC、MDI/CRT以及伺服驱动单元、输为输出单元等。
“弱电”故障又有硬件故障与软件故障之分.硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有.加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。
“强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。这部分的故障虽然维修、诊断较为方便,但由于它处于高压、大电流工作状态,发生故障的几率要高于“弱电”部分.必须引起维修人员的足够的重视。
按故障的指示形式分类
⑴有报带显示的故障
数控机床的故障显示可分为指示灯显示与显示器显示两种情况:
1)指示灯显示报警
指示灯显示报警是指通过控制系统各单元上的状态指示灯(一般由LED发光管或小型指示灯组成)显示的报警.根据数控系统的状态指示灯,即使在显示器故障时,仍可大致分析判断出故障发生的部位与性质,因此.在维修、排除故障过程中应认真检杳这些状态指示灯的状态。
2)显示器显示报警
显示器显示报警是指可以通过CNC显示器显示出报警号和报警信息的报警。由于数控系统一般都具有较强的自诊断功能,如果系统的诊断软件以及显示电路工作正常,一旦系统出现故障,可以在显示器上以报警号及文本的形式显示故障信息。数控系统能进行显示的报警少则几十种,多则上千种,它是故障诊断的重要信息。
在显示器显示报警中,又可分为NC的报警和PLC的报等两类。前者为数控生产厂家设置的故降显示.它可对照系统的“维修手册”,来确定可能产生该故障的原因。
后者是由数控机床生产厂家设置的PLC报警信息文本,属于机床侧的故降显示。它可对照机床生产厂家所提供的“机床维修手册”中的有关内容.确定故障所产生的原因。
⑵无报警显示的故障
这类故障发生时.机床与系统均无报警显示,其分析诊断难度通常较大.需要通过仔细、认真的分析判断才能予以确认。特别是对于一些早期的数控系统,由于系统本身的诊断功能不强,或无PLC报警信息文本,出现无报警显示的故障情祝则更多.
对于无报警显示故障,通常要具体情况具体分析,根据故障发生前后的变化.进行分析判断,原理分析法与PLC程序分析法是解决无报警显示故障的主要方法.
除上述常见故障分类方法外,还有其他多种不同的分类方法。如:按故障发生时有无破坏性.可分为破坏性故障和非破坏性故障两种.按故障发生与需要维修的具体功能部位.可分为数控装置故障,进给伺服系统故障,主轴驱动系统故障,白动换刀系统故障等等,这一分类方法在维修时常用。
【机床爬行故障原因及解决对策】相关文章:
机床电气故障检查及维修04-29
Ping轻松解决故障10-20
硬件故障常见原因10-09
网络故障解决方案05-12
网卡驱动常见的故障及解决技巧10-31
移动硬盘故障怎么解决04-24
Modem常见故障原因05-12
如何排除数控机床的故障-排除数控机床常见故障七大方法06-21
声卡常见故障及解决方法11-23