- 相关推荐
小升初奥数行程问题之相遇追击知识点
知识点:
发车问题是行程问题里面一种很常见的题型,解决发车问题需要一定的策略和技巧。为便于叙述,现将发车问题进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。)
原型
因为车站每隔相等的时间发一次车,而且车速不变,所以同向的、前后的两辆公交车间的距离相等。这个相等的距离也是公交车在发车间隔时间内行驶的路程。所以对于紧挨着的两辆车,有以下关系式:两车间隔距离(发车间隔)=发车时间间隔×车速在这里,为了叙述方便,我们把这个发车间隔假设为“1”。
背后追上,追及问题
由图可以知道,人车行驶方向相同,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车想追上人,那么就要比人多走这个发车间隔。
所以,根据“同向追及”,追及路程=发车间隔=(车速-人速)×追及时间,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差。即:(车速-人速)=1/a。
迎面开来,相遇问题
由图可以知道,人车行驶方向相反,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车和人相遇,那么人车的路程和就是这个发车间隔。
所以,根据“相向相遇”,路程和=发车间隔=(车速+人速)×相遇时间,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b,1/b就是公交车与行人的速度和。即:(车速+人速)=1/b。
这样,我们把发车问题化归成了“和差问题”。根据“和差问题”的解法:大数=(和+差)÷2,小数=(和-差)÷2,可以很容易地求出车速是:(1/a+1/b)÷2=(a+b)/2ab,人速是:(1/b-1/a)÷2=(a-b)/2ab。又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用公式:路程÷速度=时间,我们可以求出问题的答案,即公交车站发车的间隔时间是:1÷(a+b)/2ab=2ab/(a+b)。
总结:发车问题的难点在于时间的把握上,其实只要知道这个时间从何而起,何时结束,那么发车问题就是一个很简单的相遇、追及问题了!
【小升初奥数行程问题之相遇追击知识点】相关文章:
小升初奥数行程问题关于自动扶梯知识点01-26
小升初奥数知识点之鸡兔同笼问题01-25
关于小升初奥数专题解析:相遇问题06-08
逻辑推理问题小升初奥数知识点解析01-25
小升初奥数知识点精选201701-13
小学奥数行程问题应用题试题08-19
关于小升初奥数的必考知识点01-26
小升初奥数重要知识点整理01-26
小升初奥数知识讲解之抽屉原理01-28