- 相关推荐
2024六年级下册数学第三单元知识点
在平日的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是一些常考的内容,或者考试经常出题的地方。掌握知识点有助于大家更好的学习。下面是小编精心整理的2024六年级下册数学第三单元知识点,欢迎阅读,希望大家能够喜欢。
六年级下册数学第三单元知识点1
【圆柱】
圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
一、圆柱:圆柱由3个面围成。
(1)底面:圆柱的上、下两个面;
(2)侧面:圆柱周围的面(上下底面除外);
(3)高:圆柱的两个底面之间的距离。
二、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
圆柱的侧面展开图: 沿着高展开,展开图形是长方形。
长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高
圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch h=S侧÷C
C= S侧÷h
S侧=∏dh=2∏rh
注:(1)当底面周长和高相等时,沿高展开图是正方形;
(2)不沿着高展开,展开图形是平行四边形或不规则图形。
(3) 无论如何展开都得不到梯形.
四、圆柱的表面积:
圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=2∏rh+∏r×2
【解题方法】
一、圆柱的切割:
1.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2
2.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
二、常见的圆柱解决问题:
侧面积+两个底面积:油桶、米桶、罐桶类
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
只求侧面积:烟囱、灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
底面周长:压路机压过路面长度
五、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。长方体的体积=底面积×高
圆柱体积=底面积×高
V柱=S h =πr2 h
h =V柱÷S=V柱÷(πr2)
S=V柱÷h
注:把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化。表面积增加了2rh.
【圆锥】
圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
一、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
二、圆锥各部分的名称:
圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。
圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。(只有一条)
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
三、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
四、圆锥的体积:
圆锥的体积等于与它等底等高的圆柱体积的三分之一
V锥=×底面积×高 =S h =πr2 h
圆锥的高=圆锥体积×3÷底面积
h =3 V锥÷S=3 V锥÷(πr2)
圆锥的底面积=圆锥体积×3÷高
S=3 V锥÷h
五、圆柱与圆锥的关系:
1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长方形。
2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。
3.圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
4.圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
5.圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
6.圆柱体积比等底等高圆锥体积多2倍
7.圆锥体积比等底等高圆柱体积少
(1)等底等高:V锥:V柱=1:3
(2)等底等体积:h锥:h柱=3:1
(3)等高等体积:S锥:S柱=3:1
【解题方法】
一、圆锥的切割:
a.横切:切面是圆
b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh
二、题型总结:
1、高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。
2、半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍
3、削成最大体积的问题:
正方体里削出最大的圆柱圆锥 圆柱圆锥的高和底面直径等于正方体棱长
长方体里削出最大的圆柱圆锥 圆柱圆锥底面直径等于宽(宽﹥高)圆柱圆锥高等于长方体高
4、浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。
5、等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以。
【拓展】
圆柱与圆锥的关系
1、如果是等底等高,则有圆柱的体积是圆锥体积的3倍,反之,圆锥体积是圆柱体积的1/3;
2、如果高相等,体积相等,则有圆锥底面积是圆柱底面积的3倍,反之,圆柱底面积是圆锥底面积的1/3;
3、如果底面积相等,体积相等,则圆锥的高是圆柱的高的3倍,反之圆柱的高是圆锥的高的1/3。
圆柱和圆锥有什么区别
1、圆柱有两面个底面,圆锥只有一个底面。
2、圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。
3、在不同的底、高、底面积下,圆柱与圆锥面积和体积不同。
六年级下册数学第三单元知识点2
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π =周长÷直径≈3.14。
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积
1、圆面积公式的推导
把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年级下册数学第三单元知识点3
1、比的基本性质:
比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
2、比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
六年级下册数学第三单元知识点4
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
六年级下册数学第三单元知识点5
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
S圆=πr×r
圆的面积公式:S圆=πr2
4、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)
S环=πR2-πr2或
环形的面积公式:S环=π(R2-r2)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。例如:
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如:
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:
(1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)
(3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
六年级下册数学第三单元知识点6
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,(分母不能为0)
4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
【六年级下册数学第三单元知识点】相关文章:
人教版2016四年级下册数学第三单元试题08-10
初二数学下册知识点总结06-15
人教版初二数学下册知识点05-19
六年级下册数学知识点总结08-30
四年级下册语文第三单元作文06-17
人教版四年级下册第三单元教案06-16
四年级下册语文第三单元教学设计06-17
人教版四年级下册语文第三单元作文06-17