小学应用题解例题分析

时间:2024-07-18 02:23:31 小学知识 我要投稿
  • 相关推荐

小学应用题解例题分析

  应用题是决定小学孩子数学成绩的关键,也是拉分的关键。接下来小编搜集了小学应用题解例题分析,欢迎阅读查看,希望帮助到大家。

  1、归一问题

  【含义】

  在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

  【数量关系】

  总量÷份数=1份数量

  1份数量×所占份数=所求几份的数量

  另一总量÷(总量÷份数)=所求份数

  【解题思路和方法】

  先求出单一量,以单一量为标准,求出所要求的数量。

  例1

  买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

  解

  (1)买1支铅笔多少钱?0.6÷5=0.12(元)

  (2)买16支铅笔需要多少钱?0.12×16=1.92(元)

  列成综合算式0.6÷5×16=0.12×16=1.92(元)

  答:需要1.92元。

  例2

  3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

  解

  (1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)

  (2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)

  列成综合算式90÷3÷3×5×6=10×30=300(公顷)

  答:5台拖拉机6天耕地300公顷。

  例3

  5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

  解

  (1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)

  (2)7辆汽车1次能运多少吨钢材?5×7=35(吨)

  (3)105吨钢材7辆汽车需要运几次?105÷35=3(次)

  列成综合算式105÷(100÷5÷4×7)=3(次)

  答:需要运3次。

  2、归总问题

  【含义】

  解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

  【数量关系】

  1份数量×份数=总量

  总量÷1份数量=份数

  总量÷另一份数=另一每份数量

  【解题思路和方法】

  先求出总数量,再根据题意得出所求的数量。

  例1

  服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

  解

  (1)这批布总共有多少米?3.2×791=2531.2(米)

  (2)现在可以做多少套?2531.2÷2.8=904(套)

  列成综合算式3.2×791÷2.8=904(套)

  答:现在可以做904套。

  例2

  小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

  解

  (1)《红岩》这本书总共多少页?24×12=288(页)

  (2)小明几天可以读完《红岩》?288÷36=8(天)

  列成综合算式24×12÷36=8(天)

  答:小明8天可以读完《红岩》。

  例3

  食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

  解

  (1)这批蔬菜共有多少千克?50×30=1500(千克)

  (2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)

  列成综合算式50×30÷(50+10)=1500÷60=25(天)

  答:这批蔬菜可以吃25天。

  3、和差问题

  【含义】

  已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

  【数量关系】

  大数=(和+差)÷2

  小数=(和-差)÷2

  【解题思路和方法】

  简单的题目可以直接套用公式;复杂的题目变通后再用公式。

  例1

  甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

  解

  甲班人数=(98+6)÷2=52(人)

  乙班人数=(98-6)÷2=46(人)

  答:甲班有52人,乙班有46人。

  例2

  长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

  解

  长=(18+2)÷2=10(厘米)

  宽=(18-2)÷2=8(厘米)

  长方形的面积=10×8=80(平方厘米)

  答:长方形的面积为80平方厘米。

  例3

  有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

  解

  甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知

  甲袋化肥重量=(22+2)÷2=12(千克)

  丙袋化肥重量=(22-2)÷2=10(千克)

  乙袋化肥重量=32-12=20(千克)

  答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

  例4

  甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

  解

  “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)

  乙车筐数=97-64=33(筐)

  答:甲车原来装苹果64筐,乙车原来装苹果33筐。

  4、和倍问题

  【含义】

  已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

  【数量关系】

  总和÷(几倍+1)=较小的数

  总和-较小的数=较大的数

  较小的数×几倍=较大的数

  【解题思路和方法】

  简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1

  果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

  解

  (1)杏树有多少棵?248÷(3+1)=62(棵)

  (2)桃树有多少棵?62×3=186(棵)

  答:杏树有62棵,桃树有186棵。

  例2

  东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

  解

  (1)西库存粮数=480÷(1.4+1)=200(吨)

  (2)东库存粮数=480-200=280(吨)

  答:东库存粮280吨,西库存粮200吨。

  例3

  甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

  解

  每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

  那么,几天以后甲站的车辆数减少为

  (52+32)÷(2+1)=28(辆)

  所求天数为(52-28)÷(28-24)=6(天)

  答:6天以后乙站车辆数是甲站的2倍。

  例4

  甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

  解

  乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

  因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

  又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

  这时(170+4-6)就相当于(1+2+3)倍。那么,

  甲数=(170+4-6)÷(1+2+3)=28

  乙数=28×2-4=52

  丙数=28×3+6=90

  答:甲数是28,乙数是52,丙数是90。

  (马上点标题下“家长会”关注可获取更多教育经验、方法、学习资料,每天更新哟!)

  5、差倍问题

  【含义】

  已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

  【数量关系】

  两个数的差÷(几倍-1)=较小的数

  较小的数×几倍=较大的数

  【解题思路和方法】

  简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1

  果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?

  解

  (1)杏树有多少棵?124÷(3-1)=62(棵)

  (2)桃树有多少棵?62×3=186(棵)

  答:果园里杏树是62棵,桃树是186棵。

  例2

  爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

  解

  (1)儿子年龄=27÷(4-1)=9(岁)

  (2)爸爸年龄=9×4=36(岁)

  答:父子二人今年的年龄分别是36岁和9岁。

  例3

  商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

  解

  如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此

  上月盈利=(30-12)÷(2-1)=18(万元)

  本月盈利=18+30=48(万元)

  答:上月盈利是18万元,本月盈利是48万元。

  例4

  粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

  解

  由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此

  剩下的小麦数量=(138-94)÷(3-1)=22(吨)

  运出的小麦数量=94-22=72(吨)

  运粮的天数=72÷9=8(天)

  答:8天以后剩下的玉米是小麦的3倍。

  6、倍比问题

  【含义】

  有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

  【数量关系】

  总量÷一个数量=倍数

  另一个数量×倍数=另一总量

  【解题思路和方法】

  先求出倍数,再用倍比关系求出要求的数。

  例1

  100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

  解

  (1)3700千克是100千克的多少倍?3700÷100=37(倍)

  (2)可以榨油多少千克?40×37=1480(千克)

  列成综合算式40×(3700÷100)=1480(千克)

  答:可以榨油1480千克。

  例2

  今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

  解

  (1)48000名是300名的多少倍?48000÷300=160(倍)

  (2)共植树多少棵?400×160=64000(棵)

  列成综合算式400×(48000÷300)=64000(棵)

  答:全县48000名师生共植树64000棵。

  例3

  凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

  解

  (1)800亩是4亩的几倍?800÷4=200(倍)

  (2)800亩收入多少元?11111×200=2222200(元)

  (3)16000亩是800亩的几倍?16000÷800=20(倍)

  (4)16000亩收入多少元?2222200×20=44444000(元)

  答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

  7、相遇问题

  【含义】

  两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。

  【数量关系】

  相遇时间=总路程÷(甲速+乙速)

  总路程=(甲速+乙速)×相遇时间

  【解题思路和方法】

  简单的题目可直接利用公式,复杂的题目变通后再利用公式。

  例1

  南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

  解

  392÷(28+21)=8(小时)

  答:经过8小时两船相遇。

  例2

  小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

  解

  “第二次相遇”可以理解为二人跑了两圈。

  因此总路程为400×2

  相遇时间=(400×2)÷(5+3)=100(秒)

  答:二人从出发到第二次相遇需100秒时间。

  例3

  甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

  解

  “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,

  相遇时间=(3×2)÷(15-13)=3(小时)

  两地距离=(15+13)×3=84(千米)

  答:两地距离是84千米。

  8、追及问题

  【含义】

  两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

  【数量关系】

  追及时间=追及路程÷(快速-慢速)

  追及路程=(快速-慢速)×追及时间

  【解题思路和方法】

  简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1

  好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

  解

  (1)劣马先走12天能走多少千米?75×12=900(千米)

  (2)好马几天追上劣马?900÷(120-75)=20(天)

  列成综合算式75×12÷(120-75)=900÷45=20(天)

  答:好马20天能追上劣马。

  例2

  小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

  解

  小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是

  (500-200)÷[40×(500÷200)]

  =300÷100=3(米)

  答:小亮的速度是每秒3米。

  例3

  我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

  解

  敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知

  追及时间=[10×(22-6)+60]÷(30-10)

  =220÷20=11(小时)

  答:解放军在11小时后可以追上敌人。

  例4

  一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

  解

  这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,

  这个时间为16×2÷(48-40)=4(小时)

  所以两站间的距离为(48+40)×4=352(千米)

  列成综合算式(48+40)×[16×2÷(48-40)]

  =88×4

  =352(千米)

  答:甲乙两站的距离是352千米。


  9、植树问题

  【含义】

  按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

  【数量关系】

  线形植树棵数=距离÷棵距+1

  环形植树棵数=距离÷棵距

  方形植树棵数=距离÷棵距-4

  三角形植树棵数=距离÷棵距-3

  面积植树棵数=面积÷(棵距×行距)

  【解题思路和方法】

  先弄清楚植树问题的类型,然后可以利用公式。

  例1

  一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?

  解

  136÷2+1=68+1=69(棵)

  答:一共要栽69棵垂柳。

  例2

  一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?

  解

  400÷4=100(棵)

  答:一共能栽100棵白杨树。

  例3

  一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?

  解

  220×4÷8-4=110-4=106(个)

  答:一共可以安装106个照明灯。

  例4

  给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?

  解

  96÷(0.6×0.4)=96÷0.24=400(块)

  答:至少需要400块地板砖。

  例5

  一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?

  解

  (1)桥的一边有多少个电杆?500÷50+1=11(个)

  (2)桥的两边有多少个电杆?11×2=22(个)

  (3)大桥两边可安装多少盏路灯?22×2=44(盏)

  答:大桥两边一共可以安装44盏路灯。

  10、航船问题

  【含义】

  行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

  【数量关系】

  (顺水速度+逆水速度)÷2=船速

  (顺水速度-逆水速度)÷2=水速

  顺水速=船速×2-逆水速=逆水速+水速×2

  逆水速=船速×2-顺水速=顺水速-水速×2

  【解题思路和方法】

  大多数情况可以直接利用数量关系的公式。

  例1

  一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

  解

  由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

  船的逆水速为25-15=10(千米)

  船逆水行这段路程的时间为320÷10=32(小时)

  答:这只船逆水行这段路程需用32小时。

  例2

  甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

  解

  由题意得甲船速+水速=360÷10=36

  甲船速-水速=360÷18=20

  可见(36-20)相当于水速的2倍,

  所以,水速为每小时(36-20)÷2=8(千米)

  又因为,乙船速-水速=360÷15,

  所以,乙船速为360÷15+8=32(千米)

  乙船顺水速为32+8=40(千米)

  所以,乙船顺水航行360千米需要

  360÷40=9(小时)

  答:乙船返回原地需要9小时。

  11、列车问题

  【含义】

  这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

  【数量关系】

  火车过桥:过桥时间=(车长+桥长)÷车速

  火车追及:追及时间=(甲车长+乙车长+距离)

  ÷(甲车速-乙车速)

  火车相遇:相遇时间=(甲车长+乙车长+距离)

  ÷(甲车速+乙车速)

  【解题思路和方法】

  大多数情况可以直接利用数量关系的公式。

  例1

  一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

  解

  火车3分钟所行的路程,就是桥长与火车车身长度的和。

  (1)火车3分钟行多少米?900×3=2700(米)

  (2)这列火车长多少米?2700-2400=300(米)

  列成综合算式900×3-2400=300(米)

  答:这列火车长300米。

  例2

  一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

  解

  火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为

  8×125-200=800(米)

  答:大桥的长度是800米。

  例3

  一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

  解

  从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为

  (225+140)÷(22-17)=73(秒)

  答:需要73秒。

  例4

  一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

  解

  如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

  150÷(22+3)=6(秒)

  答:火车从工人身旁驶过需要6秒钟。

  12、时钟问题

  【含义】

  就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。

  【数量关系】

  分针的速度是时针的12倍,

  二者的速度差为11/12。

  通常按追及问题来对待,也可以按差倍问题来计算。

  【解题思路和方法】

  变通为“追及问题”后可以直接利用公式。

  例1

  从时针指向4点开始,再经过多少分钟时针正好与分针重合?

  解

  钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以

  分针追上时针的时间为20÷(1-1/12)≈22(分)

  答:再经过22分钟时针正好与分针重合。

  例2

  四点和五点之间,时针和分针在什么时候成直角?

  解

  钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。

  (5×4-15)÷(1-1/12)≈6(分)

  (5×4+15)÷(1-1/12)≈38(分)

  答:4点06分及4点38分时两针成直角。

  例3

  六点与七点之间什么时候时针与分针重合?

  解

  六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

  (5×6)÷(1-1/12)≈33(分)

  答:6点33分的时候分针与时针重合。

  13、盈亏问题

  【含义】

  这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。

  【数量关系】

  利润=售价-进货价

  利润率=(售价-进货价)÷进货价×100%

  售价=进货价×(1+利润率)

  亏损=进货价-售价

  亏损率=(进货价-售价)÷进货价×100%

  【解题思路和方法】

  简单的题目可以直接利用公式,复杂的题目变通后利用公式。

  14、方阵问题

  【含义】

  将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

  【数量关系】

  (1)方阵每边人数与四周人数的关系:

  四周人数=(每边人数-1)×4

  每边人数=四周人数÷4+1

  (2)方阵总人数的求法:

  实心方阵:总人数=每边人数×每边人数

  空心方阵:总人数=(外边人数)?-(内边人数)?

  内边人数=外边人数-层数×2

  (3)若将空心方阵分成四个相等的矩形计算,则:

  总人数=(每边人数-层数)×层数×4

  【解题思路和方法】

  方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

  例1

  在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

  解

  22×22=484(人)

  答:参加体操表演的同学一共有484人。

  例2

  有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

  解

  10-(10-3×2)?

  =84(人)

  答:全方阵84人。

  例3

  有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

  解

  (1)中空方阵外层每边人数=52÷4+1=14(人)

  (2)中空方阵内层每边人数=28÷4-1=6(人)

  (3)中空方阵的总人数=14×14-6×6=160(人)

  答:这队学生共160人。

  例4

  一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

  解

  (1)纵横方向各增加一层所需棋子数=4+9=13(只)

  (2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)

  (3)原有棋子数=7×7-9=40(只)

  答:棋子有40只。

  例5

  有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?

  解

  第一种方法:1+2+3+4+5=15(棵)

  第二种方法:(5+1)×5÷2=15(棵)

  答:这个三角形树林一共有15棵树。

  15、工程问题

  【含义】

  工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

  【数量关系】

  解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

  工作量=工作效率×工作时间

  工作时间=工作量÷工作效率

  工作时间=总工作量÷(甲工作效率+乙工作效率)

  【解题思路和方法】

  变通后可以利用上述数量关系的公式。

  例1

  一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

  解

  题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

  由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

  答:两队合做需要6天完成。

  例2

  一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

  解一

  设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

  (1)每小时甲比乙多做多少零件?

  24÷[1÷(1/6+1/8)]=7(个)

  (2)这批零件共有多少个?

  7÷(1/6-1/8)=168(个)

  答:这批零件共有168个。

  解二

  上面这道题还可以用另一种方法计算:

  两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

  由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

  所以,这批零件共有24÷1/7=168(个)

  例3

  一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

  解

  必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

  60÷12=560÷10=660÷15=4

  因此余下的工作量由乙丙合做还需要

  (60-5×2)÷(6+4)=5(小时)

  答:还需要5小时才能完成。

  例4

  一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

  解

  注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

  要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

  我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

  每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

  即一个排水管与每个进水管的工作效率相同。由此可知

  一池水的总工作量为1×4×5-1×5=15

  又因为在2小时内,每个进水管的注水量为1×2,

  所以,2小时内注满一池水

  至少需要多少个进水管?(15+1×2)÷(1×2)

  =8.5≈9(个)

  答:至少需要9个进水管。

  16、正反比例问题

  【含义】

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

  【数量关系】

  判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

  【解题思路和方法】

  解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

  正反比例问题与前面讲过的倍比问题基本类似。

  例1

  修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

  解

  由条件知,公路总长不变。

  原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

  现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

  比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

  答:这条公路总长3600米。

  例2

  张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

  解

  做题效率一定,做题数量与做题时间成正比例关系

  设91分钟可以做X应用题则有28∶4=91∶X

  28X=91×4X=91×4÷28X=13

  答:91分钟可以做13道应用题。

  例3

  孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

  解

  书的页数一定,每天看的页数与需要的天数成反比例关系

  设X天可以看完,就有24∶36=X∶15

  36X=24×15X=10

  答:10天就可以看完

  17、按比例分配问题

  【含义】

  所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

  【数量关系】

  从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

  【解题思路和方法】

  先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

  例1

  学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

  解

  总份数为47+48+45=140

  一班植树560×47/140=188(棵)

  二班植树560×48/140=192(棵)

  三班植树560×45/140=180(棵)

  答:一、二、三班分别植树188棵、192棵、180棵。

  例2

  用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

  解

  3+4+5=1260×3/12=15(厘米)

  60×4/12=20(厘米)

  60×5/12=25(厘米)

  答:三角形三条边的长分别是15厘米、20厘米、25厘米。

  例3

  从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

  解

  如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

  1/2∶1/3∶1/9=9∶6∶2

  9+6+2=1717×9/17=9

  17×6/17=617×2/17=2

  答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

  例4

  某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

  解

  80÷(12-8)×(8+12+21)=820(人)

  答:三个车间一共820人。

  18、百分数问题

  【含义】

  百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。

  在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。

  【数量关系】

  掌握“百分数”、“标准量”“比较量”三者之间的数量关系:

  百分数=比较量÷标准量

  标准量=比较量÷百分数

  【解题思路和方法】

  一般有三种基本类型:

  (1)求一个数是另一个数的百分之几;

  (2)已知一个数,求它的百分之几是多少;

  (3)已知一个数的百分之几是多少,求这个数。

  例1

  仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?

  解

  (1)用去的占720÷(720+6480)=10%

  (2)剩下的占6480÷(720+6480)=90%

  答:用去了10%,剩下90%。

  例2

  红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?

  解

  本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525-420)÷525=0.2=20%

  或者1-420÷525=0.2=20%

  答:男职工人数比女职工少20%。

  例3

  红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?

  解

  本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此

  (525-420)÷420=0.25=25%

  或者525÷420-1=0.25=25%

  答:女职工人数比男职工多25%。

  例4

  红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?

  解

  (1)男职工占420÷(420+525)=0.444=44.4%

  (2)女职工占525÷(420+525)=0.556=55.6%

  答:男职工占全厂职工总数的44.4%,女职工占55.6%。

【小学应用题解例题分析】相关文章:

小学数学低年级应用题解题思路分析04-02

小学应用题解方程技巧03-23

小学数学经典应用题解析大全01-23

新GRE填空双空题例题解析01-22

小学应用题解题技巧总结04-01

公路工程造价计价依据例题解析03-29

强夯置换法例题分析03-30

成人英语三级考试时态经典例题解析03-06

房产估价师制度与政策经典例题分析02-26