解析小学奥数应用题牛吃草问题

时间:2024-10-11 18:55:21 小学知识 我要投稿
  • 相关推荐

解析小学奥数应用题牛吃草问题

  牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的“牛吃草问题”,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:“每天牧草都匀速生长”,草生长的速度是固定的,这就可以发掘出等量关系,如从“供10头牛吃20天”表达出生长速度,再从“供15头牛吃10天”表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草×头数×天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草×头数×天数-新生长的草

  新生长的草=草的生长速度×天数

  考虑已知条件,有原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  原有的草=每头牛每天吃的草×15×10-草的生长速度×10

  所以:原有的草=每头牛每天吃的草×200-草的生长速度×20

  原有的草=每头牛每天吃的草×150-草的生长速度×10

  即:每头牛每天吃的草×200-草的生长速度×20=每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200草的生长速度×20+每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200-每头牛每天吃的草×150=草的生长速度×20-草的生长速度×10

  每头牛每天吃的草×(200-150)=草的生长速度×(20-10)

  所以:每头牛每天吃的草×50=草的生长速度×10

  每头牛每天吃的草×5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草×25x-草的生长速度×x

  原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  有:每头牛每天吃的草×25x-草的生长速度×x

  =每头牛每天吃的草×10×20-草的生长速度×20

  所以:1×25x-5x=1×10×20-5×20

  解这个方程

  25x-5x=10×20-5×20

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

【解析小学奥数应用题牛吃草问题】相关文章:

小学奥数牛吃草问题的解题方法介绍07-29

小学升初中牛吃草问题应用题及答案06-03

小学奥数应用题的行船问题07-22

小学奥数行程问题应用题试题08-19

小学奥数应用题06-04

小学奥数经典应用题10-26

植树问题小学奥数应用题题型及答案参考07-07

小学奥数基础应用题09-16

小学奥数应用题汇总04-22

关于小升初奥数专题解析:相遇问题06-08