- 反比例函数的图像和性质教案 推荐度:
- 相关推荐
反比例函数图像教案
数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。下面是关于反比例函数图像教案,希望大家认真阅读!
【1】反比例函数图像教案
教学目标:
知识与技能:
1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;。
2.能判断一个给定的函数是否为反比例函数。
过程与方法:
通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。
情感、态度与价值观:
经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。
教学重点、难点设计:
对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。
教学准备与方法设计:
通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。
学生知识状况分析
由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.
教学过程
一:创设问题情境,引入新课
活动目的 给学生设置疑问,激发学生学习兴趣。
我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t= 中,t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
二:新课讲解
活动目的 在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。
1.引入我们今天要学习的是反比例函数,
2. 探究归纳
经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. 复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
问题1 从A地到B地的路程为1200 km,某人开车要从A地到B地,求汽车的速度v(km/h)和时间t(h)之间的关系式。
从这个关系式中发现:
1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.
2.自变量v的取值是v>0.
问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的`一边长为x(米),求另一边的长y(米)与x的函数关系式.分析 根据矩形面积可 xy=24, 即
从这个关系中发现:
1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边 减小;若一边减小了,则另一边增大;
2.自变量的取值是x>0.
上述几个函数都具有 的形式,一般地,形如 (k是常数,k≠0)的函数叫做反比例函数
说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即 ,k是常数,且k≠0;反比例函数 ,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.
2.反比例函数的解析式又可以写成: ( k是常数,k≠0).
3.要求出反比例函数的解析式,只要求出k即可.
三.互动平台
(1)每人写三个反比例函数,请同桌指出其中k的值.
(2)小组讨论:举出实际生活学习中具有反比例关系的例子。
四、做一做 多媒体课件演示
1. 下列函数关系中,哪些是反比例函数?
(1) (2) (3) (4) (5) (6)
2. 写出下列函数关系式,并指出它们是什么函数?
(1)三角形的面积S是常数时,它的底边长y和这条底上的高x的函数关系;
(2)食堂存煤15吨,可使用的天数t和平均每天的用煤
量Q(千克)的函数关系.
(3).某厂现在年产值是150万元,计划今后每年增加10万元,请写出年产值y(万元)与年数x之间的关系.
五、交流反思
1.本堂课,我们讨论了具有什么 样的函数是反比例函数,一般地,形如 (k是常数,k≠0)的函数叫做反比例函数
2.反比例函数的几种常见形式
形式1: (k为常数,k≠0)
形式2: (k为常数,k≠0)
形式3: (k为常数,k≠0)
【2】反比例函数图像教案
一、教材依据
人教版八年级第十七章《反比例函数》第二节第二课时
二、设计思路
(一)教材分析
本节课讲述内容是在理解反比例函数的意义和概念、掌握了反比例函数的画法的基础上学习的,反比例函数的图象与性质的探索是对函数概念的深化,同时也是下一节反比例函数应用的基础,有了本节课的知识储备,便于学生利用函数的观点、数形结合的思想来处理问题和解释问题。
(二)教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想通过教师引导,学生积极“探究——讨论——交流——总结” ,同时在教学中通过演示,操作,观察,练习等师生的共同活动,让每个学生动手、动口、动眼、动脑,培养学生观察能力、直觉思维能力。
(三)学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想,体会数形结合的思想。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。
三、教学目标
(一)知识目标
探索并掌握反比例函数的主要性质,逐步提高从函数图象获取信息的能力,体会数形结合的思想.
(二)能力目标
通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.
(三)情感与价值观
让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
四、教学重点
探索反比例函数的性质,体会数形结合的思想.
五、教学难点
反比例函数的图象特点及性质的探索.
六、教学准备
学生课前将函数图象画在黑板上(两个)
七、教学过程
反比例函数的图象与性质(二)教学案
(一)学习目标:
1、探究反比例函数的性质.
2、体验数形结合的数学思想.
(二)自学及学法指导:
1、用列表法画函数y= 和 的图象.( 学生课前板画在黑板上)
解:列表:
图象:
2、结合P41函数 和 的图象和黑板所画图象思考下列问题.(小组讨论完成)
(1)所画的图象是什么形状?
(2)每个函数的图象分别位于哪几个象限?
(3)在每个象限内y随x的变化是如何变化的?
(4)图象与x轴、y轴能相交吗?为什么?
3、归纳总结:反比例函数的性质 (小组轮流回答)
(1)反比例函数 (k为常数,k≠0)的图象是 .
(2)当k>0时,双曲线的`两分支分别位于 象限. 在每个象限内,y值随x值的增大而 .
(3)当k<0时,双曲线的两分支分别位于 象限,在每个象限内,y值随x值的增大而 .
(三)展示自学成果,教师答疑解惑:
基础知识: (个人独立完成)
1、课本P43-P44 1. 2.
2、反比例函数 的图象在第二、四象限.则m的取值范围是 .
3、若该函数在每个象限内y随x的增大而减少,则m的值可能是( )
A、-1 B、3 C、0 D、-3
能力提升: (小组合作探究)
1、①若点A(-2,y)B(-1,y2)C(1,y3)在反比例函数 的图象上,则y1,y2,y3的大小关系是 .
②若点A(x1,y1)、B(x2,y2)是反比例函数 图象上的点,
且x1>x2>0,y1与y2的大小关系是 .
③若点A(x1,y1)、B(x2,y2)是反比例函数 图象上的点,
且0>x1>x2,y1与y2的大小关系是 .
④若A(x1,y1)B(x2,y2)是反比例函数 图象上的点,
且x1>x2,则y1与y2的大小关系是 .
A、y1>y2 B、y1=y2 C、y1<y2 p="" d、以上都不对<="">
2、利用函数 的图象探究长方形面积与K的关系.
①.如图,点A是 的图象上一点,AB⊥y轴于点B,则有△AOB的面积是( )
A、1 B、2 C、3 D、4
②如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为3,则反比例函数的关系式是
(四)课堂检测:(个人独立完成)
1、填空题:
①反比例函数 的常数k= .它的图象是 当x>0时,图象在 ,当x<0时,图象在 象限.
②已知反比例函数 的图象位于二、四象限,则k的取值范围是 .
③如图:P是反比例函数 ;的图象上一点,若图中阴影部分的面积是5,则反比例函数的关系式是
2、选择题:
①正比例函数y=kx和反比例函数 ,在同一坐标系中的图象可能是( )
②若反比例函数 的图象过P(2,m)Q(1,n).则m与n的大小关系是( )
A、m>n B、m<n p="" d、无法确定<="" m="n">
③如图所示:点P是函数 的图象上一点,图中阴影部分的面积为( )
A、6 B、3 C、2 D、1
八、教学反思
通过本节课教学,我认为满意的地方有:
1、课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中,同时注重了学生的合作交流,在学生尝试探索反比例函数的性质前和后都安排了同桌交流、小组合作交流,之后又鼓励学生上讲台交流,让学生在不断交流中掌握反比例函数的性质,体会树形结合的思想。
2、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展;让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,只有这样,才能极大地释放孩子的潜能。
今后应注意以下几个方面:
1、教学观念还要不断更新,更大限度地把时间还给学生,把课堂还给学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2、对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
3、这节课如果能利用多媒体课件,例题的展示将会更快,整节课将会更加丰满。
【反比例函数图像教案】相关文章:
反比例函数的图像和性质教案(精选8篇)06-29
反比例函数教案(通用12篇)11-15
php对图像的各种处理函数代码总结04-01
反比例函数练习题03-09
EXCEL公式与函数教案12-13
中学二次函数教案03-09
Dreamweaver插入图像的教程03-05
初中一次函数教案03-02
PHP的压缩函数03-31