考研数学复习计划范文
时间过得真快,总在不经意间流逝,迎接我们的将是新的生活,新的挑战,此时此刻需要制定一个详细的计划了。那么你真正懂得怎么制定计划吗?以下是小编整理的考研数学复习计划范文,仅供参考,欢迎大家阅读。
考研数学复习计划范文1
大三下学期一开学就开始张罗着准备复习考研,开始在找一本适合自己的复习资料,我选的复习资料和一般人的不一样,一般人都是选什么李永乐。。等等名师的辅导书,我结果精心筛选最后选了华中科技大学的一本书,蓝色皮的,16开。 找到之后就开始复习了。我是英语数学并进的。
大三下学期的时候还有很多课程,所以我一般只是有时间就看,等哪一学期过完了,那本书才看了120多页。不过我看的很仔细,基本上都是每一个知识点都看的很明白,搞的很懂。暑假边做家教边复习。暑假过完,基本上那本书看了四分之三了,9月份就看完了一遍。
当然一本那么厚的书看过一遍之后,前面看的就忘了很多,这很正常,这个时候不用急。看完一遍书之后,就开始做真题了,前10年的题目,认认真真做,千万不要计较得分,就当时平时练习。做完一张试卷之后,就要对这张试卷进行剖析了,一题一题认认真真看,一定要做到每题都知道来龙去脉。把所有的知识点在你选的辅导书上找到相关点,再看书,这个步骤就是温习辅导书的过程了。基本上一周我做2套真题,大概一个月之后就做完了。
接着就是选一本好的模拟题了,推荐《李永乐400题》,这本书有10套试题,题目比真题难,所以在做的时候不要计较得分,我平时都是做90分左右。还是很真题一样,要做到每题懂。在辅导书上找到相应的知识点。
做完这个之后呢,就是再看真题,看完真题之后再把《李永乐400题》做一遍,最好是在图书馆借一本没有干净的,不是自己已经写满字的。有时间再看一遍。如果你觉得有富裕时间,就再找和真题难度较相近试题练练手。
忠告:真题一定要看2-3遍,《李永乐400题》至少2-3遍,不要搞题海战术,题目要精,醉倒每题搞懂,而且在做题的'时候解题步骤要自己一步一步写。复习只要3本书就够了,真题、,《李永乐400题》、辅导书(要适合你自己的)。 我的做法:真题3遍,《李永乐400题》做到随便点一个题目,可以知道这个题所涉及的知识点在辅导书上的缩影在哪里。而且做到了随手可以写出解题步骤。
当你做到这些之后,在考试的时候,你肯定会发现,某些题目你以看到,就知道涉及到哪些知识点。解题步骤信手拈来。
考研数学复习计划范文2
暑假考研复习的黄金阶段,这个阶段大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。复习是一步一步,循序渐进的,不要指望一口气把什么都掌握,学习必然是一个不断加强的过程,需要反复的训练,特别是考研数学,考点如此之多,想要短期内掌握的很好,显然是不可能的,它是需要一遍一遍的不断强化复习的。
在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。
一、函数、极限与连续
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
二、一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如"证明在开区间内至少存在一点满足.....",此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
这一部分会比较频繁的出现在大题中,复习的关键是掌握一般的方法步骤,这就需要多做题目来巩固掌握,要做到对一般难度和常见题型有100%的把握。
三、一元函数积分学
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
四、向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的'习题练习,需要做到快速正确的求解。
五、多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
六、多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
这部分内容和题型,数一考生要足够的重视。
七、无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。
这部分相对来说可能有难度,但是掌握好还是有办法的。首先,各个概念要清楚;其次,对一般的题型要有把握解答;最后,找一些比较灵活的题型练练自己的思路。
八、微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
这一部分也是考研数学中的难点,对上面提到的常用方法要熟练掌握,多做这方面的综合题来强化。
总之,海文考研建议,数学要想考高分,20xx年的考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓"质",就是彻底理解所做过的每一道题,而这一点通常显的更为重要。
考研数学复习计划范文3
数学的复习对于报考理工类和经济类考生来说,如何复习好数学是他们整个考研复习的关键。很多同学在复习数学时,之所以会陷入误区,搞题海战术,就是在认识上还没有理清几个概念:基础知识、做题和解题。大家都知道数学只要掌握了正确的复习方法,就能事半功倍。但是不能端正认识,只会事倍功半,建议大家在开始复习数学之前将考研数学三复习计划好好的规划一下再来复习!
基础知识:加深理解 形成体系。
我们需要把握知识点,需要从一定的深度去把握和理解知识点,同时又能够从不同的角度去理解知识点,去掌握知识点之间的联系,熟悉常见的变通形式,能够透过现象抓住本质。认识是不断丰富和发展,这就要求我们与时俱进,随着复习的深入,随着知识点与题目的结合,对知识点的认识和理解,都是要不断加深的,这就是为什么我们要不断的重复着回归课本,回归最基本的概念,方法。数学题实际上就是基础知识的具体运用,就是知识的`实践。因此我们就需要在解决题目的过程中,在实践的基础上,来反复加深对题目所用知识的理解,从而加深对整个数学知识体系的理解。
做题:检验成效 提炼方法
对具体题目的解决,这就是我们考试的形式,也是检验我们知识水平和认识水平的一种方式。因此,一道题目的正确解决,首先需要你对这道题目所涉及的知识点的正确的,深刻的理解;同时,需要你能够采用正确高效的方法,将知识合理运用,进行正确的推理、计算,到最后正确地给出题目的解答。我们平时的做题和考试时又有着不同的侧重点,平时我们的题目演练,目的是为了我们自身的提高。而一道题目能给我们的提高又是有两方面的:一方面是加深了我们对基础知识的认识,另一方面加强我们分析和解决问题的能力。而真正考试的时候,那是作为一种检验,我们需要做的是不惜一切代价地去展示自己,去在乎每一道题的正确与否,去对分数斤斤计较。因此,作为平时的做题练习,包括模拟考试,我们不去在乎会做与否,不必去为了一次模拟考试不如意而对自己产生怀疑甚至懊恼的情绪。我们需要做的,是从这一点一滴中来发现自己的不足,来丰富自己的知识,来弥补自己的缺陷,来进步自己的思维,来升华自己的认识。因此,每一次做题,都需要一个比做题时间更多的回顾过程,从这中间来加深认识,提高解题能力,挖掘出里面的精粹。只有大家把数学知识的底蕴都学习透彻了,那么相信大家在复习的时候就好复习了!
考研数学复习计划范文4
时间安排:3个月(9月-11月)
目标:
1.掌握考研数学基础知识;
2.熟悉数学解题思路和方法;
3.逐步提高数学应试能力。
计划表:
阶段一:复习基础知识(一个月)
内容:
1.集合论与函数
2.数列与极限
3.导数与微分
4.积分与不定积分
时间安排:
第一周:集合论与函数,复习并掌握基础知识;
第二周:数列与极限,复习并掌握基础知识;
第三周:导数与微分,复习并掌握基础知识;
第四周:积分与不定积分,复习并掌握基础知识。
阶段二:提高解题能力(一个月)
内容:
1.微积分
2.概率统计
3.线性代数
时间安排:
第一周:微积分,重点复习和理解基本概念和定理;
第二周:微积分,学习和掌握常见的微积分应用题型;
第三周:概率统计,重点复习和理解基本概念和定理;
第四周:概率统计,学习和掌握常见的概率统计应用题型。
阶段三:模拟考试和提高应试能力(一个月)
时间安排:
第一周:进行一次全真模拟考试,找出自己的'弱点;
第二周:针对上一次考试中的不足,重点复习和练习相关知识点;
第三周:进行一次全真模拟考试,总结经验,分析考试策略;
第四周:根据自己的情况,有针对性地进行强化练习,并且逐步提高解题速度和准确率。
温馨提示:
1.计划表只是参考,实际情况请根据个人能力和需要进行调整;
2.复习过程中,注意积累和总结,多做笔记和练习题;
3.建议在复习期间,保持良好的生活习惯和饮食习惯,加强锻炼和休息,保持精神状态的稳定。
考研数学复习计划范文5
暑期是考研数学复习的黄金时期,同学们一定要安排利用好暑期这段时间做好复习。而从历年真题分析来看,真题准确反映了考试的重要知识点,每年试题可以说知识点不变,只是出题的角度和形式发生了变化,所以真题是最权威的复习资料,是同学们全程复习的必备品。那么如何合理利用真题,提高复习效率?下面数学的辅导老师们给同学们一些建议。
通过前期的复习,同学们对考研数学三门学科的基本概念、基本理论和基本题型都有了一定地理解和掌握,建议同学们可做做汤家凤老师的20xx《考研数学15年真题解析与方法指导》(数学一至三) ,对前期复习中的知识点和题型进行查漏补缺,及时复习掌握。
同学们在做历年真题时建议独立完成,一方面可以检查前期的复习效果,另一方面可以检测出自己的'不足处,且同学们多思考总结自己做错的原因,如会做粗心出错、一知半解、完全不会做等等,尽量把这些错题按照做错的原因分类整理在笔记本上,后期复习时可着重复习这些错题,提高复习效率。
同时同学们在做历年真题时,建议反复比较,把重复知识点和题型摘出来,记录在笔记本上,在后期重点复习这些知识点,反复练习这些题型的题,这样可以达到事半功倍的复习效果,并且平时就养成做题仔细的好习惯,不要因为不是考试就敷衍做几步,考试因粗心大意而失利,后悔莫及。
最后祝同学们考研复习顺利!
考研数学复习计划范文6
虽然现在考试大纲还没公布,但是根据前几年的大纲总结发现,内容变动几乎是很少,甚至没有变,由此我们在考研备考的时候完全可以根据上一年的大纲去复习备考。在考研复习的过程中除了把握住大纲上的重难点之外更最重要的是在做题中训练自己灵活解题的能力!依据数学基本概念、基本性质、基本定理,从题目复杂的表面挖掘出题目考查的本质,注重一个知识点的不同形式的变化,这是考生接下来这段时间需要训练的主要内容。
这段时间考生在做题时要注意以下方面:
一、习惯思考的能力
阅读一个知识点,宏观上思考其在整个数学科目中作用及与其他科目之间的联系,微观上思考其本身概念的深度,其具有的'特点及满足的性质等等。拿到一个题目,研究其条件与结论的联系,思考题目所在的知识点及可能使用的方法,能否用更多的方法来求解,能否找到最为简单的方法。看历年真题,总结考试题目的规律,思考命题特点及与考试大纲之间的联系。
二、高效解决问题的能力
考试时不仅要正确解答题目,更重要的是要快速的达到目的。现在很多辅导资料对知识点的总结,题型的归纳都比较全面,如果能利用其对知识的归纳再加上自己的边看边思考,对知识点达到融会贯通不成问题。
三、快速判断所考知识点的能力
考研数学大纲所规定的知识点是有限的,重要的知识点就更少一些,但考研数学已经进行了二十几年,重点之处年年考,但这些知识点每年都会换上新的外衣,乔装打扮,使不少考生被蒙蔽,之后悔之不及。
四、持之以恒的能力
数学因其高于日常生活而常受到学生的冷落,这样就会产生马太效应,愈不关心她,它就离你愈远,故而考研复习需要保持对数学热情,坚持到底!
在考研复习中考生要做到的是掌握核心,即万变不离其宗,抓住其形变而神不变之处才能轻松成功。
考研数学复习计划范文7
一、基础阶段
这个阶段主要是夯实基础,时间从大三下学期开学至暑假,每天3到4个小时,以为大三上学期学校课程本身比较繁重,所以建议用一个下午或者晚上的整块的时间来专门复习数学。复习根据历年考研数学大纲要求结合教材对应章节系统进行,打好基础,特别是对大纲中要求的基本概念、基本理论、基本方法要系统理解和掌握。在这个阶段把基础打扎实,是考验数学取得好成绩的前提。这个阶段,建议大家分为两轮来复习。
第一轮精读材料:10月到次年6月中旬,9个月时间。这一阶段主要是复习教材,按大纲要求结合教材对应章节全面复习,按章节顺序完成教材的课后习题,通过练习掌握教材知识和内容。教材的编写是循序渐进的,所以我们也要按照规律来复习,重复复习会起到事半功倍的效果。
第二轮练习测试、巩固基础知识:6月中旬到7月中旬,约1个月时间。这一阶段主要是练习测试、巩固所学知识。建议大家使用教材配套的复习指导书或习题集,通过做题来巩固知识,在练习过程中遇上不懂或似懂非懂的题目要认真对待,多思考,不要一看不会就直接看答案,应当先查看教材相关章节,把相关知识点彻底搞懂。建议按要求完成练习测试后,还要对教材的内容进行梳理,对重点、难点做好笔记,以便于后面复习把它消化掉。
第一阶段的复习主要靠自己,遇到难点和不会做的测试,这样能够帮助基础阶段复习有效的节约时间,更好的掌握知识点,为之后的强化阶段夯实基础。
二、强化巩固阶段
这一阶段主要是巩固第一阶段的学习成果。时间从7月中旬到11月初,约4个月时间,每天保证3小时以上。通过对辅导材料和真题的学习,了解考试难度和明确考试方向,进行专项复习提高自己的解题效率和质量。本阶段是考研复习的重点,对考研成绩起决定性作用。
第一轮:学习时间是7月中旬到8月底两个月,主要任务是完整的、认真研读一遍考研辅导书和分析2 套考研真题,全面了解考查内容,熟悉考研数学的重点题型以及其解题方法。如果有条件的情况下,尽量参加一下考研培训行业中比较好的辅导班。
第二轮:大概用一个月的时间也就是9月10月初一个多月,主要考研辅导书与专项模拟题、真题或习题的复习,对考试重点题型和自己薄弱的内容进行攻坚复习。
第三轮:本阶段的'最后时间段,时间是10月初到11月初。主要是学习笔记的梳理和套题的训练,检测你的解题速度和准确率,查漏补缺、薄弱加强,目的是巩固基础提高能力。
三、决胜冲刺阶段
这一阶段已经进入最后的冲刺了。时间从11月到考前,约一个半月,要做到:
通过做题进总结和梳理(做题训练应当重点放在按考试要求的套题上);
2、复习知识点,对基本概念、基本公式、基本定理进行记忆,尤其是平常不常用的、记忆模糊的公式,经常出错的要重点记忆。
3、保持水平和状态,复习和做题一定要坚持到考前;
4、进行补缺补漏,轻松应考。
考研数学复习计划范文8
暑假阶段,这时大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。复习是一步一步,循序渐进的,不要指望一口气把什么都掌握,学习必然是一个不断加强的过程,需要反复的训练,特别是考研数学,考点如此之多,想要短期内掌握的很好,显然是不可能的,它是需要一遍一遍的不断强化复习的。
在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。
一、函数、极限与连续
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
二、一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足.....”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
这一部分会比较频繁的出现在大题中,复习的关键是掌握一般的方法步骤,这就需要多做题目来巩固掌握,要做到对一般难度和常见题型有100%的把握。
三、一元函数积分学
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
四、向量代数和空间解析几何
计算题:求向量的'数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
五、多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
六、多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
这部分内容和题型,数一考生要足够的重视。
七、无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。
这部分相对来说可能有难度,但是掌握好还是有办法的。首先,各个概念要清楚;其次,对一般的题型要有把握解答;最后,找一些比较灵活的题型练练自己的思路。
八、微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
这一部分也是考研数学中的难点,对上面提到的常用方法要熟练掌握,多做这方面的综合题来强化。
总之,数学要想考高分,20xx年的考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要。
考研数学复习计划范文9
考研数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的,所以基础一定要打扎实。高等数学是考研数学内容最多的一部分,所以高等数学这部分是相当重要的。高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容。
此外,数学要考的另一部分是简单的分析综合能力和解应用题的能力。近几年,高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是运算的熟练程度,换句话说就是解题的速度。如果能够围绕着这几个方面进行有针对性地复习,取得高分就不会是难事了。
数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以考生们经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。
如果现在你已经开始了高数初级阶段的复习,那么在之后的更加细密的复习过程中同学们需要注意哪些问题呢?
首先要明确考试重点,充分把握重点。比如高数第一章“函数极限和连续”的重点就是不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。
对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的'可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。 还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和,主要是间接的展开法。重点主要就是这些了。
要充分把握住这些重点,同学们在以后的复习的强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度。
最后,希望考生们有针对性地进行扎实的复习、逐步解决高数的重难知识点加上对出题者命题思路的了解,相信大家一定能取得高分!
考研数学复习计划范文10
考生应了解考研数学的命题原则、知道考题题型及试题难度近几年,教育部考试中心命题基本倾向是:根据学生的实际水平命题,特别是从20xx年开始,全国各个高校开始大规模扩招,学生的整体水平有所下降,所以试题的难度在这几年均有所降低,特别 20xx年试题难度降到了历史的最低点。
硕士研究生入学考试的数学试题以考察数学基本概念、基本方法和基本原理为主,并在这个基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合所学知识解决实际问题能力的考察。具体遵循下列四原则:
1.科学性与公平性原则
作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免对于广大考生来说过于专业和抽象难懂的内容。
2.覆盖全面的原则
考研数学试题的内容要求涵盖所有考纲要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。
3.控制难易度的原则
考研数学试题要求以中等偏上的题为主,考试及格率控制在30%-40%。
4.控制题量的原则:
考研数学试题的题量控制在20--23道之间(一般6道填空题,8道选择题,9道解答题),保证考生基本能答完试题并有时间检查。
硕士研究生入学考试的数学试题从知识内容来说有覆盖面较大的特点,从题型与难度来说有以下特点:
1.填空题(现在一份试卷中有6个填空题、共占24分)
填空题实际上相当于一些简单的计算题,用于考察“三基”及数学性质,主要是为扩大试卷的覆盖面而设计的,一般以中等偏下难度的试题为主。
2.选择题(现在一份试卷中有8个选择题、共占32分)
选择题大致可分为三类:计算性的,概念性的与推理性的。主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。
3.题
以数学一为例,整张试卷中,一般有两道证明题:高等数学与线性代数各一题。高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的`不等式、级数敛、散性的论证。线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。至于概率统计证明题通常集中于随机变量的不相关和独立性,估计的无偏性等。此类题难度一般中等偏上,无过难的题。
4.计算与综合题
一份试卷中,包括填空题在内计算题或计算性质的题占80%以上。计算题中有一部分是综合题。综合题考查的是知识之间的有机结合,此类题难度一般为中等难度。
5.应用题
每一试卷中都有一道应用题,主要考查学生的建模能力,而不是考查专业知识面(如微分方程部分不会考到涉及流体力学、电力学知识的应用题)。不会出现对某一群体明显有利或明显不利背景的题。应用题大致有几何、物理(一般限于力学和运动学)、变化率,等方面的问题,数三、数四应用题常涉及经济方面。
考研数学复习计划范文11
目前,20xx考研初试已渐渐远去,各高校陆续在放寒假,对于那些没把握考过而打算重新考研的同学和计划20xx考研的同学们来说,这个寒假正是一个制定20xx考研计划的大好时机。下面,由拥有多年辅导经验的海天考研专家来帮大家拟定20xx考研数学复习计划,但愿可以帮助大家20xx考研数学复习顺利!
在考研课程中,数学是一门综合性强、知识覆盖面广、难度大的考试。与其他学科相比,只要肯下苦功、方法得当,考研数学提高分数相对要快一些。下面从四个阶段来制定20xx数学复习计划。
第一阶段(1月至2月底):20xx年1月初考过的同学可以好好的找一下自己的失分原因,对照题目和答案,全面、分析,对基础知识进行查漏补缺式的复习。其他没考过研的同学可以了解数学考研内容、考试形式和试卷结构,充分准备复习资料,调整自己进入复习状态。这一阶段学习的目的是全面夯实基础。考生应该根据报考学校及报考专业对高等数学的要求,对未学的内容补充学习,完善学习内容。此阶段的重点在于积累,先系统学习教材,全面整理基本概念、定理、公式及其基本应用。
第二阶段(3月至5月底):通过上一阶段对基础知识的复习,同学们应该已具备基本的做题能力,可以结合基本的概念、定理、公式展开全方位的做题练习,做题时要善于把试题按照知识点分成几个类型,每一类型都要做一些题目,要会举一反三,比较简单的题型可以少做练习,把练习时间多分给那些比较难的题目类型。这一轮的反复非常必要。值得注意的'是这一阶段学习中一定要从联系的角度看问题,深刻理解基本概念、基本原理。本阶段要求对高等数学课程进行总体逻辑框架上的整理,建立起整个专业知识体系。
第三阶段(6月至11月底):认真分析、总结历年真题,同时结合考研大纲知识,按专题归纳整理知识内容,侧重对数学的重点、难点进行提炼和把握,将已经掌握的知识转化为实际解题能力。用模拟考试等一些正规的考试来检测复习效果,以便发现问题,及时调整本阶段复习计划,同时也有助于增加实战经验。重点归纳总结,强化应试能力训练。
第四阶段(12月至1月初):经过前几个阶段的努力奋斗,一转眼就到了考前的最后冲刺阶段,这一阶段要尽量保住自己前几个阶段的复习成果,我们要做到:1、通过对以往学习笔记和所做试题的复习查漏补缺;2、对教材和笔记中的基本概念、基本公式、基本定理加强记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、进行适量冲刺题训练,保持做题感觉并调整考试状态,轻松应考。该阶段,切忌钻研偏难怪题。一定要在保住自己之前复习成果的同时,熟练记住所有考纲上的定义定理、公式,注意考试技巧,一定要坚持"先易后难"的做题原则,否则就前功尽弃了。
【考研数学复习计划】相关文章:
考研数学复习计划 数学考研复习计划07-23
数学考研复习计划12-06
考研数学复习计划12-08
考研数学高效复习计划01-12
考研数学复习计划(精选15篇)11-02
考研数学复习计划精选15篇11-02
[集合]数学考研复习计划15篇04-27
数学考研复习计划【共5篇】01-31
考研数学复习计划(通用15篇)11-03