数学天才莱布尼兹的故事

时间:2024-07-27 21:40:34 文圣 名人故事 我要投稿

数学天才莱布尼兹的故事

  莱布尼兹是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。不知道大家对他的了解有多少呢?知道他的故事和个人成就吗?下面是小编为大家收集的数学天才莱布尼兹的故事,希望对大家有所帮助。

数学天才莱布尼兹的故事

  数学天才莱布尼兹的故事

  一、生平事迹

  莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。

  20岁时,莱布尼兹转入阿尔特道夫大学。这一年,他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。1673年,莱布尼兹被推荐为英国皇家学会会员。此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。

  1716年11月14日,莱布尼兹在汉诺威逝世,终年70岁。

  二、始创微积分

  17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673~1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼兹大体上完成的,但不是由他们发明的”(恩格斯:《自然辩证法》)。

  然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。”(但在第三版及以后再版时,这段话被删掉了。)因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。

  三、高等数学上的众多成就

  莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。

  莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼兹证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。

  四、中西文化交流之倡导者

  莱布尼兹对中国、的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶 酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。

  莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。他的虚心好学、对中国文化平等相待,不含“欧洲中心论”偏见的精神尤为难能可贵,值得后世永远敬仰、效仿。

  五、丰硕的物理学成果

  莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼兹的物理学研究一直是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。

  人物成就

  微积分

  现今在微积分领域使用的符号仍是莱布尼茨所提出的。在高等数学和数学分析领域,莱布尼茨判别法是用来判别交错级数的收敛性的。

  莱布尼茨与艾萨克·牛顿谁先发明微积分的争论是数学界至今最大的公案。莱布尼茨于1684年发表第一篇微分论文,定义了微分概念,采用了微分符号dx、dy。1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号∫。依据莱布尼茨的笔记本,1675年11月11日他便已完成一套完整的微分学。

  然而1695年英国学者宣称:微积分的发明权属于艾萨克·牛顿;1699年又说:牛顿是微积分的“第一发明人”。1712年英国皇家学会成立了一个委员会调查此案,1713年初发布公告:“确认艾萨克·牛顿是微积分的第一发明人。”莱布尼茨直至去世后的几年都受到了冷遇。由于对牛顿的盲目崇拜,英国学者长期固守于牛顿的流数术,只用牛顿的流数符号,不屑采用莱布尼茨更优越的符号,以致英国的数学脱离了数学发展的时代潮流。

  不过莱布尼茨对牛顿的评价非常高,在1701年柏林宫廷的一次宴会上,普鲁士国王腓特烈询问莱布尼茨对牛顿的看法,莱布尼茨说道:“在从世界开始到牛顿生活的时代的全部数学中,牛顿的工作超过了一半。”

  牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了)。因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的。

  牛顿从物理学出发,运用几何方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。

  莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1714至1716年间,莱布尼茨在去世前,起草了《微积分的历史和起源》一文(本文直到1846年才被发表),总结了自己创立微积分科学的思路,说明了自己成就的独立性。

  拓扑学

  拓扑学最早称之“位相分析学”(analysis situs),是莱布尼茨1679年提出的,这是一门研究地形、地貌相类似的学科,当时主要研究的是出于数学分析的需要而产生的一些几何问题。关于莱布尼茨对拓扑学的贡献,尚存争论。Mates引用Jacob Freudenthal1954年一篇论文里的话说:

  尽管莱布尼茨认为一列点在空间中的位置是由其间距离唯一决定的——当且仅当距离发生变化时点的位置发生相应的改变——他的仰慕者欧拉,在他著名的一篇论文(1736年发表,解决了哥尼斯堡(加里宁格勒)七桥问题及其推广)中,却是在“拓扑变形时点的位置不发生变化”的意义下使用“几何位置”这个名词的。他误信了莱布尼茨是这个概念的创始者。……人们常常意识不到莱布尼茨是在完全不同的意义下使用这个名词的,因此被尊为数学的这个分支领域的奠基人并不恰当。

  但平野秀秋持有不同看法,他引用本华·曼德博的话说:“在莱布尼茨海量的科学成果中探索是发人深省的体验。除了微积分以及其他已经完成的研究之外,大量涉及内容广泛且极富前瞻性的研究对科学发展的推动力势不可挡。在‘填充理论’上即有例子,……在发现莱布尼茨还曾经关注过几何度量的重要性之后,我对他的狂热更甚了。在“欧几里德普罗塔”中……其使得欧几里德公理更加严格,他陈述道,……‘对直线,我有数种不同的定义。直线是曲线的一种,而曲线的任何部分都是和整体相似的,因此直线也具有这种特性;这不仅适用于曲线,而且适用于集合。’”这个论断今天已经可以被证明。

  因而分形几何(由本华·曼德博发扬光大)理论在莱布尼茨的自相似性思想和连续性原理中寻求支持:大自然没有跳跃(拉丁语“natura non facit saltus”,英语"nature does not make jumps")。当莱布尼茨在他的《形而上学论》著作中写道,“直线是曲线的一种,其任何部分都是和整体类似的”,他实际上提前两个世纪预言了拓扑学的诞生。至于“填充理论”,莱布尼茨对他的朋友Des Bosses说,“你想象一个圆,然后用三个全等的最大半径的圆填满它,后来的三个小圆又可以以同样的过程被更小的圆填充”。这个过程可以无限地继续下去,并由此生发出了自相似性的思想。莱布尼茨对于欧氏公理的改进亦包含同样的概念。

  符号思维

  莱布尼茨有个显著的信仰,大量的人类推理可以被归约为某类运算,而这种运算可以解决看法上的差异:

  “精炼我们的推理的唯一方式是使它们同数学一样切实,这样我们能一眼就找出我们的错误,并且在人们有争议的时候,我们可以简单地说:让我们计算[calculemus],而无须进一步的忙乱,就能看出谁是正确的。”(发现的艺术 1685,W 51)

  莱布尼茨的演算推论器,很能让人想起符号逻辑,可以被看作使这种计算成为可行的一种方式。莱布尼茨写的备忘录(帕金森1966年翻译了它们)可以被看作是对符号逻辑的探索——所以他的演算——上路了。但是Gerhard和Couturat没有出版这些著作,直到现代形式逻辑在19世纪80年代于Frege的概念文字和Charles Peirce及他的学生的著作中形成,所以就更在乔治·布尔和德·摩根在1847开创这种逻辑之后了。

  单子论

  除了是一位出众的天才数学家之外,莱布尼茨亦是欧陆理性主义哲学的高峰。承继了西方哲学传统的思想,他认为世界,因其确定(换句话说,有关世界的知识是客观普遍和必然的)之故,必然是由自足的实体所构成。所谓的自足,是不依他物存在和不依他物而被认知。莱布尼茨的前辈巴鲁赫·斯宾诺莎以为实体只有一个,就是神/自然。莱布尼茨对此不敢苟同,原因之一是斯氏的泛神观和圣经的神学有明显冲突,其次,是因为斯氏的理论没有能够解决由笛卡儿以降的二元论,令世界出现了断层(他虽然强调世界为一,但没有说明这一个看来是二元对立的世界的一统是如何可能)。

  莱布尼茨以为实体是多的,是无限多的。跟随亚里士多德的实体观,他以为实体是一命题的主语。在一个命题S是P中,S就是实体。因为实体是自足的,则它要包含所有可能的谓语,即是“...是P”。由此,我们可以推出,实体有四个特征:不可分割性、封闭性、统有性和道德性。

  不可分割性是指,任何有广延的东西,即有长度的东西,都可以被分割。被分割了的东西分别包含了自己的全部可能性,并且自足,则有广延的东西的内容,即可能性要依附于他的部分的可能性。如此类推,则只要有广延性,就不自足,而要依他物而被知(对莱布尼茨来说,真正的知识就是要穷一物的可能性),就不是实体。故实体不可分割,是一没有广延的东西,在莱布尼茨的晚年著作中(Monadology),他称之为单子(Monad),单子的性质就是思(thought)。这广延的世界就是由无限多的单子构成。

  封闭性是说每一单子必然是自足的,不依他而存在,而又包含了自己的全部可能性。则一单子不可能和另一单子有交互作用(interaction)。若一单子作用于另一单子,则后一单子有一可能性没有包括在该单子之内,即该单子没能自足的包含自己的全部内容,而要依附于他物。因为实体的定义,这是不可能的。故莱布尼茨说:“单子之间没有窗户。”

  统有性是指每一单子都必然以某种角度(perspective)包括了全世界。因为世界是紧密的由因果所构成,故A作用于B,其实不单单是作用于B,而是全世界。如果说一单子的内容包括自身的全部可能,则每一单子均以该单子自身为中心指向全世界。而这个世界是一统的,不等于说所有单子都是一样的,因为同一世界可以不同的角度来认知,而不失为一一统的世界。

  最后,单子的道德性则较复杂。这个特性的提出是基于两个理由,一、是世界的一统性(unity),二、是世界的确定性。对于前者,所有的单子都包含全世界,但各以自己的角度,世界的一统性是不是假的呢?如果我们要说一统,可以如何说起呢?对于后者,世界是由单子构成,单子只是其可能性的集合,世界亦只是一可能。那我们是不是不可能有一种不仅仅是可能,而是必然的知识呢?我们可以在什么意义下说有关世界的知识是真的、确定的呢?莱布尼茨将之归功于一神,世界的创造者。从一个方面说,神在创造之前,没有已成的材料,故没有既成的有限处境,则创造是一纯意志的创造,神是单凭其至善而创造这一个世界的。

  故此,如莱布尼茨的名言,这一个确切成就了的世界是“众多可能的世界之中最好的一个”。这乎合了莱布尼茨的信仰要求。另一方面,要确定的了解一事物,则要了解其原因。要理解这一个原因,又要追索该原因的原因。如此类推,则世界的确定性知识不可能是一世界之内的动因(efficient cause),而是一超越的形上因(metaphysical cause)。

  莱布尼茨称这个理论上必要设置的形上因为神。故,这一个世界之所以是如此,就是因为这是最好的,是至善的可能世界。人,要完全理解这神的至善意志,是不可能的,但可朝这一个方向迈进,因为人的心灵作一特殊的单子,是有记忆的,可以基于过去,畴划自己的未来,这是人类分享的神性,即道德的可能性。人可以透过开放可能性,了解这个神创造的世界,而了解如何成为一个道德的人。

  这一种世界的道德观,可以被视为康德的先驱,分别在于莱布尼茨独断的提出了神为道德的完满,把可能性说成了是在神的目光之下的实在,而没有真正的将世界的可能性看作为可能性。而且莱布尼茨对天赋观念(innate idea)的批评,正是黑格尔对康德的批评,在这个意义上说,康德一方面是被休谟(Hume)从莱布尼茨的独断梦中唤醒,可是同时亦到由洛克(Locke)起的哲学病变--对理性界限的审查--所污染。在这一方面,莱布尼茨却比康德走前了一步。

  形式逻辑

  莱布尼茨是在亚里士多德和1847年乔治·布尔和德·摩根分别出版开创现代形式逻辑的著作之间最重要的逻辑学家。莱布尼茨阐明了合取、析取、否定、同一、集合包含和空集的首要性质。莱布尼茨的逻辑原理和他的整个哲学可被归约为两点:

  所有的我们的观念(概念)都是由非常小数目的简单观念复合而成,它们形成了人类思维的字母。

  复杂的观念来自这些简单的观念,是由它们通过模拟算术运算的统一的和对称的组合。

  莱布尼茨与中国文化

  莱布尼茨是最早接触中华文化的欧洲人之一,从一些曾经前往中国传教的教士那里接触到中国文化,之前应该从马可·波罗引起的东方热留下的影响中也了解过中国文化。法国汉学大师若阿基姆·布韦(Joachim Bouvet,汉名白晋,1662-1732年)向莱布尼茨介绍了《周易》和八卦的系统。在莱布尼茨眼中,“阴”与“阳”基本上就是他的二进制的中国版。他曾断言:“二进制乃是具有世界普遍性的、最完美的逻辑语言”。如今在德国图林根,著名的郭塔王宫图书馆(Schlossbibliothek zu Gotha)内仍保存一份莱氏的手稿,标题写着“1与0,一切数字的神奇渊源。”

  其手稿标题全文是:“1与0,一切数字的神奇渊源。……这是造物的秘密美妙的典范,因为,一切无非都来自上帝。”而且莱布尼茨自己写给若阿基姆·布韦的信中说:“第一天的伊始是1,也就是上帝。第二天的伊始是2,……到了第七天,一切都有了。所以,这最后的一天也是完美的。因为,此时世间的一切都已经被创造出来了。因此它被写作‘7’,也就是‘111’(二进制中的111等于十进制的7),而且不包含0。只有当我们仅仅用0和1来表达这个数字时,才能理解,为什么第七天才完美,为什么7是神圣的数字。特别值得注意的是它(第七天)的特征(写作二进制的111)与三位一体的关联。”

  郭书春在《古代世界数学泰斗刘徽》一书461页中称:“中国有所谓《周易》创造了二进制的说法,至于莱布尼兹受《周易》八卦的影响创造二进制并用于计算机的神话,更是广为流传。事实是,莱布尼兹先发明了二进制,后来才看到传教士带回的宋代学者重新编排的《周易》八卦,并发现八卦可以用他的二进制来解释。”以此为由,认为并不是莱布尼茨看到阴阳八卦才发明二进制。梁宗巨著《数学历史典故》(1995年出版)一书14~18页对这一历史公案亦有此说。

  胡阳、李长铎在《莱布尼茨发明二进制前没有见过先天图吗——对欧洲现存17世纪中西交流文献的考证》通过对欧洲现存17世纪中西交流文献的研究考证,否定了莱布尼茨在发明二进制以后才见到先天图的说法。先天图在莱布尼茨发明二进制之前,已被斯比塞尔称之为二进制。

  有关莱布尼茨二进制与中国古代典籍《易经》关系问题的讨论涉及如何看待近代中西文化的各自特质以及它们之间的相互作用问题。虽然二进制只是一种算术记数法和计数法,但它实际上是特定文化(包括数学、语言、符号、逻辑和哲学等)的产物。现有观点中的一个明显不足是把与二进制相关的概念、理论(原理、符号等)的形成与发展看作是单因素的、一次性完成的结果,又把二进制与《易经》哲学和卦图的相互作用关系看作是“全或无”的关系,从而忽视了概念、理论的形成和变化过程,也容易导致两种极端的判断。

  因此,立足于近代中西文化交流的大背景,从概念与认知分析入手,能够把莱布尼茨二进制思想的形成过程置于近代中西文化交流所编织的概念网络系统之中,进而梳理出莱布尼茨在秉承西方近代数学概念的同时,如何通过获取和吸纳《易经》概念资源而实现概念的创造性转换的脉络。我们看到,除了莱布尼茨个人的独创性的伟大贡献外,近代意义上的二进制实际上是“中西合璧”的产物。

【数学天才莱布尼兹的故事】相关文章:

名人故事之数学天才莱布尼兹07-17

励志故事:没有不努力的天才03-19

励志小故事:天才老鼠之谜04-03

名人故事之天才建筑师贝聿铭02-12

“天才少年”苏翊鸣的励志故事01-01

周杰伦:从音乐天才成为明星的励志故事03-31

18岁天才CEO张伯宏的创业故事分享03-01

精选《天才捕手》台词01-30

勤奋与天才作文08-25