计算数学专业就业方向

时间:2024-06-06 11:19:05 职场动态 我要投稿
  • 相关推荐

计算数学专业就业方向

  计算数学是由数学、物理学、计算机科学、运筹学与控制科学等学科交叉渗透而形成的一个理科专业。下面是小编收集整理的计算数学专业就业方向,希望对大家有所帮助。

计算数学专业就业方向

  计算机科学与技术专业就业现状

  1、网络工程方向就业前景良好,学生毕业后可以到国内外大型电信服务商、大型通信设备制造企业进行技术开发工作,也可以到其他企事业单位从事网络工程领域的设计、维护、教育培训等工作。

  2、软件工程方向 就业前景十分广阔,学生毕业后可以到国内外众多软件企业、国家机关以及各个大、中型企、事业单位的信息技术部门、教育部门等单位从事软件工程领域的技术开发、教学、科研及管理等工作。也可以继续攻读计算机科学与技术类专业研究生和软件工程硕士。

  3、通信方向 学生毕业后可到信息产业、财政、金融、邮电、交通、国防、大专院校和科研机构从事通信技术和电子技术的科研、教学和工程技术工作。

  4、网络与信息安全方向宽口径专业,主干学科为信息安全和网络工程。学生毕业后可为政府、国防、军队、电信、电力、金融、铁路等部门的计算机网络系统和信息安全领域进行管理和服务的高级专业工程技术人才。并可继续攻读信息安全、通信、信息处理、计算机软件和其他相关学科的硕士学位。

  计算机科学与技术专业发展趋势

  截至2005年底,全国电子信息产品制造业平均就业人数 322.8万人,其中工人约占6 0%,工程技术人员和管理人员比例较低,远不能满足电子信息产业发展的需要。软件业人才供需矛盾尤为突出。2002年,全国软件产业从业人员59.2万人,其中软件研发人员为15.7万人,占26.52%。而当前电子信息产业发达国家技术人员的平均比例都在30%以上。中国电子信息产业技术人员总量稍显不足。

  计算数学专业就业前景

  一、计算数学专业就业前景

  随着科技事业的发展和普及,数学专业与其他专业的联系更加紧密,尤其是与计算机联系的紧密型,使得数学专业知识将会得到更广泛的应用,就业前景比较好。

  被誉为“科学的语言”的数学,一方面在现代科学研究及整个社会中发挥的作用越来越大;另一方面,在很多活跃的领域,计算数学正面临前所未有的机遇和挑战,一定要提高自己的计算机操作能力,有效的利用计算机进行研究工作。

  二、计算数学专业就业方向

  此专业的毕业生主要到学校、科研院所、金融行业、电信等部门从事数学研究与教育、图形图像及信号处理、自动控制、统计分析、信息管理、科学计算和计算机应用等工作。还可以自主创业,如开办与数学相关的辅导培训机构等。

  主要部门及职位:

  1、学校、

  2、科研机构、

  3、高新技术企业、

  4、金融、电信等部门

  5、开发工程师

  6、BI开发工程师

  7、数据库管理工程师

  8、自动化测试工程师

  拓展:

  专业定义

  计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程 组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。

  五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代数方程的解,一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方程等等也只能采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题。

  在求解方程的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的。迭代法还可以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。

  在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比较古老的普通消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。

  在计算方法中,数值逼近也是常用的基本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表示的函数。数值逼近的基本方法是插值法。初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。

  在遇到求微分和积分的时候,如何利用简单的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法也是近似解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,

  常用的是有限差分法、有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程和定解条件。求出差分方程的解法作为求偏微分方程的近似解。

  研究范畴

  计算问题可以说是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,哪一行哪一业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算数学。计算数学属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。

  模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。模糊数学是以不确定性的事物为其研究对象的。在模糊数学中,已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

  分支学科

  算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、突变理论、数学物理学。

  数学分支特点

  应用数学与计算数学

  计算数学也叫做数值计算方法或数值分析。

  应用数学是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。

  图论应用在网络分析,数论应用在密码学,博弈论、概率论、统计学、应用在经济学,都可见数学在不同范畴的应用。

  计算数学与生物数学

  计算数学是研究如何用计算机解决各种数学问题的科学,它的核心是提出和研究求解各种数学问题的高效而稳定的算法。高效的计算方法与高速的计算机是同等重要的,计算作为认识世界改造世界的一种重要手段,已与理论分析、科学实验共同成为当代科学研究的三大支柱。计算数学主要研究与各类科学计算与工程计算相关的计算方法,对各种算法及其应用进行理论和数值分析,设计与研究用数值模拟方法代替某些耗资巨大甚至是难于实现的实验,研究专用或通用科学工程应用软件和数值软件等。近年来,计算数学与其他领域交叉渗透,形成了诸如计算力学,计算物理,计算化学,计算生物等一批交叉科学,在自然科学、社会科学、工程技术及其国民经济的各个领域得到了日益广泛的应用。

  培养方向

  1、微分方程数值解法及其应用

  2、优化与控制理论及其数值计算

  3、数值代数与数值软件

【计算数学专业就业方向】相关文章:

云计算专业就业方向11-20

计算机专业的就业方向11-28

信息与计算科学专业就业方向07-10

数学与应用数学专业就业方向06-18

数学与应用数学专业的就业前景及就业方向06-27

数学与应用数学专业就业方向与就业前景10-03

计算机专业就业方向及前景07-22

信息与计算科学专业就业前景与方向10-02

金融数学专业就业方向分析02-20