- 相关推荐
四年级观察日记400字
转眼一天又过去了,相信你有很多感悟吧,不妨坐下来好好写写日记吧。在写之前,要先考虑好内容和结构喔!以下是小编为大家收集的四年级观察日记400字,欢迎大家分享。
四年级观察日记400字1
教学目标
(一)知识认知要求
1。回顾收集数据的方式。
2。回顾收集数据时,如何保证样本的代表性。
3。回顾频率、频数的概念及计算方法。
4。回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。
5。能利用计算器或计算机求一组数据的算术平均数。
(二)能力训练要求
1。熟练掌握本章的知识网络结构。
2。经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。
3。经历调查、统计等活动,在活动中发 展学生解决问题的能力。
(三)情感与价值观要求
1。通过对本章内容的回顾与思考,发展学 生用数学的意识。
2。在活动中培养学生团队精神。
教学重点
1。建立本章的知识框架图。
2。体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用。
教学难点
收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。
教学过程
一、导入新课
本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1。举例说明收集数据的方式主要有哪几种类型。
2。抽样调查时,如何保证样本的代表性?举例说明。
3。举出与频数、频率有关的几个生活实例?
4。刻画数据波动的`统计量有 哪些?它们有什么作用?举例说明。
针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。
收集数据的方式有两种类型:普查和抽样调查。
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。
用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等。
上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。
刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在这个试验点甲、乙两种玉米哪一种产量比较稳定?
我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。
还可以用方差来比较哪一种玉米稳定。
s甲2=100,s乙2=200。
s甲2<s乙2,所以甲种玉米的产量较稳定。
三。建立知识框架图
通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。
例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 。请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天。
解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19
(2)①10人 ②11 40 0。125 0。325 ③25
五.课时小结
这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。
六.课后作业:
七.活动与探究
从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1。5,1。6,1。4,1。6,1。3,1。4,1。2,1。7,1。8(单位:千克)。依此估计这240尾鱼的总质量大约是
A。300克 B。360千克C。36千克 D。30千克
四年级观察日记400字2
[教学目标]
1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
2. 渗透对应关系,提高学生的数感.
[教学重点与难点]
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
[教学设计]
[设计说明]
一.利用已有知识,引入
1.如图,怎样说明数轴上点A和点B的位置,
2.根据下图,你能正确说出各个象棋子的位置吗?
二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为
由数轴的表示引入,到两个数轴和有序数对。
从学生熟悉的物品入手,引申到平面直角坐标系。
描述平面直角坐标系特征和画法
正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的`数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三.深入探索
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]
1. 教材49页习题6.1——第1题
2. 教材50页——第2,4,5,6。
[小结]
1. 平面直角坐标系;
2. 点的坐标及其表示
3. 各象限内点的坐标的特征
4. 坐标的简单应用
[作业]
必做题:教科书50页:3题
(教材51页综合运用7,8,9,10为练习课内容)
明确点的坐标的表示法
仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系
通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征
四年级观察日记400字3
教学目标:
教学目标:
1、 会画已知点关于已知直线 的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。
2、 经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。
三、教学重点与难点
教学重点:作已知图形的轴对称图形的一般步骤。
教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。
学习过程:
一.学前准备
1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。
2、思考:
下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。
3、请你在下图的方格内,设计一个轴对称图形。
二.自学、合作探究
(一)自学、相信自己(书本)
实践、操作:
1、思考:如图1-9, 3点都在方格纸的格点位置上。请你再找一个格点 ,使图中的4点组成一个轴对称图形。
2、如果直线 外有一点 ,那么怎样画出点 关于直线 的对称点 ?
问题一:画点关于直线 的对称点 的方法,并说明道理。
问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。
(二)思索、交流(书本例题练习难)
3、分别画出图1-10(1)、(2)、(3)中线段 关于直线 对称的线段 。
4、 分别在图图1-10(1)、(2)、(3)的直线 上取一点 ,并画 关于直线 对称的` .
(三)应用、探究(难度大综合纵横思考)
例题讲解
例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?
例题1
例题2
三.学习体会(空)
四.自我测试(书本练习)
1.练习1 下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。
1、如图1,线段AB与A’B’关于直线l对称,
⑴连接AA’交直线l于点O,再连接OB、OB’。
⑵把纸沿直线l对折,重合的线段有: 。
⑶因为△OAB和△OA’B’关于直线l , 所以△OAB -△OA’B’,直线l垂直平分线段 ,∠ABO=∠ , ∠AO’B=∠ 。
图 1 图 2 图3
2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,
⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;
⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;
⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;
⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?
3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?
四年级观察日记400字4
教学目标
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
教学过程
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的.概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
作业布置
本章的课后的方程式巩固提高练习。
四年级观察日记400字5
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的.顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
四年级观察日记400字6
教学目标:
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
教学重点和难点:
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
教学过程:
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。
再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。
再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。
2、让同学讨论:从已知条件如何求二次函数的`解析式。
例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。
2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
四年级观察日记400字7
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的`字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
四年级观察日记400字8
教学目的:
1、使学生学会将正多边形的边长、半径、边心距和中心角 、周长、面积等有关 的计算问题转化为解直角三角形的问题.
2、通过定理的证明过程培养学生观察能力、推理能力、概括能力;
3、通过一定量的计算,培养学生正确迅速的运算能力;
教学重点:
化正多边形的有关计算为解直角三角形问题定理;正多边形计算图及其应用.
教学难点:
正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.
教学过程:
一、新课引入:
前几课我们学习了正多边形的定义、概念、性质,今天我们来学习正多边形的有关计算.
大家知道正多边形在生产和生活中有广泛的应用性,伴随而来的有关正多边形计算问题必然摆在大家的面前,如何解决正多边形的计算问题,正是本堂课研究的课题.
二、新课讲解:
哪位同学回答,什么叫正多边形.(安排中下生回答:各边相等,各角相等的多边形.)
什么是正多形的边心距、半径?(安排中下生回答:正多边形内切圆的半径叫做边心距.正多边形外接圆的半 径叫做正多边形的半径.)
正多边形的边有什么性质、角有什么性质?(安 排中下生回答:边都相等,角都相等.)
什么叫正多边形的中心角?(安排中下生回答:正多边形的一边所对正多边形外接圆的圆心角.)
正n边形的中心角度数如何计算?(安排中下生回答:中心角的度数
正n边形的一个外角度数如何计算?(安排中下生回答:
一个外角度
哪位同学有所发现?(安排举手学生:正n边形的中心角度数=正n边形的一个外角度数.)
哪位同学记得n边形的内角和公式?(请回忆起来的学生回答).
哪位同学能根据n边形内角和定理和正n边形的性质给出求正n边形一个内角度数的公式?(安排中下生回答:正n边形每个内角度数
正n边形的每个内角与它有共同顶点的外角有何数量关 系?(安排中下生回答:互补).
根据正n边形的每个内角与它有共同顶点的外角的互补关系和正n边形每个外角度数公式,正n边形每个内角度数又可怎样计算?(安排中
(幻灯展示练习题,学生思考,回答)
1.正五边形的中心角度数是____ __;每个内角的度数是______;
2.一个正n边形的一个外角度数是360,则它的边数n=______,每个内角度数 是__ ____;
3.一个正n边形的一个内角的度数是140,则它的边数n=______,中心角度数是______.
对于前2题安排中下生回答,对于第3题不仅要回答题目的答案而且要求回答思路.
解此方程n=9.
幻灯展示正三角形、正方形、正五边形、正 六边形.如下图,让学生边观察、边回答老师依次提出的问题、边思考.
1.观察每个图形的半径,分别将它们分割成多少个什么样子的三角形?(安排中下生回答:等腰三角形)
2.观察每个图形中所得的三角形具有什么关系?为什么?(安排中等生回答:全等,依据( S.S.S)或(S.A.S))
3.将上述四个图形的观察与思考推而广之,你得出了什么结论?哪位同学说说自己的想法(安排中上生回答:正n边形的n条半径分正n边形为n个全等的等腰三角形.)
套上幻灯片的复合片:作出各等腰三角形底边上的高,如下图,安排学生观察、思考并回答以下问题:
1.这些等腰三角形的每一条高都将每个等腰三角形分割为两个直角三角形,这两个直角三角形全等吗?为什么?(安排中下生回答)
2.这些等腰三角形的高在正多边形中的名称是什么?(安排中下生回答: 边心距)
3.正n边形的 n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?(安排中等生回答:2n个)
给出定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.
再套幻灯片的复合片,如图7-140,安排学生观察每个 直角三角形都由正多边形的哪些元素组成 .
安排中下生回答:直角三角形的斜边是正多边形的.半径R、一条直角边是正多边形的边心距.另一直角边是正多边形边长的一半(在此安排中等生回答:为什么?)半径与边心距的 夹角是正多边形一个中心角的一半.(安排中等生回答“为什么?”)
讲解:由于这个直角三角形融合了正多 边形诸多元素,所以就可将正多边形有关半径、边心距、边长、中心角的计算问题归结为解直角三角形的问题来解决.
幻灯给出正多边形抽象的计算图,教师讲解:
由于正多边形的有关计算都归结为解直角三角形的问题来解决,所以我们只要画出这个 直角三角形就可以了,其余就不画或略画.图中R表示半径,rn表示正n边形的边心距,an表示正n边形的边长,an表示正n边形的中心角.
提问:对于给定具 体边数的正n边形,你首先可以求出直角三角形
(教师讲解):直角三角形中一锐角已知,所以只要再给直角三角形的R、rn、an其中一项赋值就可求出其它元素.例如:(幻灯展示题目)
例1 已知:如下图,正△ABC的边心距r3=2.
求:R、a3.
问:要解此题,首先要做什么?(找中等生回答:画出基本计算图)
最后要做什么工作:(找中上生回答:选择三角函 数)
解:
∵n=3
又
完成下列各题:(幻灯展示题目)
1.已知,正方形ABCD的边长a4=2.
求:R,r4.
2.已知:正六边形ABCDEF的半径 R=2,
求:r6,a6.
(对于计算正确且较快的学生,让他们自拟试题进行计算,教师重点辅导需要帮助的学生)
再回到例1,问:你会求这个正三角形的周长P3吗?怎么求?为什么这样求?(安排中等生回答 :边长3,因为正三角形 三边相等).
再问:你会求这个正三角形的面积S3吗?怎么求?为什么这样求?(安排中 等生回答:直角△AOC的面积6,由定理可知这样的直角三角形的个数是边数的2倍.或者,等腰△ AOB的面积3,由定理可知选择的等腰三角形的个数与边数相同.)
请同学们分别计算上述二题的周长和面积(计算快而准的学生让其自拟题目再练习)[
(幻灯给出例2):已知正六边形ABCDEF的半径为R,求这个正六边形的边长a6、周长P6和面积S6.
(提问):1.首先要作什么?(安排中下生回答:画基本计算图)
2.然 么?(安排中下生回答:选择三角函数)
P6=9 R.
通过上面计算,你得出正六边形的半径与边长有什么数量关系?(安排中下生回答:相等)希望大家记住这个结论:a6=R,因为它不仅有利于计算而且是尺规画正六边形的依据.
三、课堂小结:
哪位同学能说一下,这堂课我们都学习了什么知识?(安排中等生归纳)
1.化正多边形的有关计算为解直角三角形问题定理,2.运用正多
角计算.
四、布置作业
四年级观察日记400字9
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
四年级观察日记400字10
一 、教学目标
(一)基础知识目标:
1。理解方程的概念,掌握如何判断方程。
2。理解用字母表示数的好处。
(二)能力目标
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标
增强用数学的意识,激发学习数学的'热情。
二、教学重点
知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点
如何找相等关系列方程
四、教学过程
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于
任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例1 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库 原来有多少面粉?
师生共同分析:
1。本题中给出的已知量和未知量各是什么?
2。已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)
若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x—15%x=42 500,
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果
分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一
小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x—(5—4),
解这个方程: 2x=10,
所以 x=5。
其苹果数为 3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得 )
课堂练习:
1。买4本练习本与3支铅笔一共用了1。24元,已知铅笔每支0。12元,问 练习本每本多少元?
2某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。
五、课堂小结
首先,让学生回答如下问题:
1。本节课学习了哪些内容?
2。列一元一次方程方法和步骤是什么?
3。在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;
布列方程)
(2)以上步骤同学应在理解的基础上记忆。
六、作业布置
1。买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2。用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
四年级观察日记400字11
一、教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
二、重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
三、教学过程
(一)复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的'笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。
因为1.2×5=6,所以小红能买到5本笔记本。
(二)新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)。
列方程:设需要租用x辆客车,可得解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)。
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
四、巩固练习
教科书习题
五、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
四年级观察日记400字12
学习目标 1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量.
重点
难点 重点:正、负数的概念,具有相反意义的量
难点:理解负数的概念和数0表示的量的意义
教学流程 师生活动 时间 复备标注
一、导入新课
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2 页,回答下列问题
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的`数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第2—3页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.
3、用正负数表示具有相反意义的量:自学课本3—4页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量.
完成3页练习
4、例题
自学例题,完成 归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标
四年级观察日记400字13
一、素质教育目标
(一)知识教学点
1.使学生理解多项式的概念.
2.使学生能准确地确定一个多项式的次数和项数.
3.能正确区分单项式和多项式.
(二)能力训练点
通过区别单项式与多项式,培养学生发散思维.
(三)德育渗透点
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.
(四)美育渗透点
单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美
二、学法引导
1.教学方法:采用对比法,以训练为主,注重尝试指导.
2.学生学法:观察分析→多项式有关概念→练习巩固
三、重点、难点、疑点及解决办法
1.重点:多项式的概念及单项式的联系与区别.
2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.
3.疑点:多项式中各项的符号问题.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)复习引入,创设情境
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.
(出示投影1)
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.
, , ,2, , , ,
2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答.
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.
(二)探索新知,讲授新课
师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.
[板书]3.1整式(多项式)
学生活动:讨论归纳什么叫多项式.可让学生互相补充.
教师概括并板书
[板书]多项式:几个单项式的和叫多项式.
师:强调每个单项式的符号问题,使学生引起注意.
(出示投影2)
练习:下裂代数式 , , , , , ,
, , 中,是多项式的有:
___________________________________________________________.
学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.
师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.
师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.
[板书]
学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.
师:给予归纳,并做适当板书:
[板书]
学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的'项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.
[板书]
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.
(三)尝试反馈,巩固练习
(出示投影3)
1.填空:
2.填空:
(1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.
(2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.
(四)归纳小结
师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.
归纳:单项式和多项式统称为整式.
[板书]
说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.
巩固练习:
(出示投影4)
下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.
【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.
(五)变式训练,培养能力
(出示投影5)
1.单项式 , , 的和_________,它是__________次__________项式.
2. 是_______次________项式 是__________次_________项式,它的常数项_________.
3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.
4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.
师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.
自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.
学生活动:学生边回答师边板书,然后学生讨论是否符合要求.
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.
八、随堂练习
1.判断题
(1)-5不是多项式( )
(2) 是二次二项式( )
(3) 是二次三项式( )
(4) 是一次三项式( )
(5) 的最高次项系数是3( )
2.填空题
(1)把上列代数式分别填在相应的括号里
, , ,0, , ,
; ;
; ;
.
(2)如果代数式 是关于 的三次二项式则 , .
九、布置作业
(一)必做题:课本第149页习题3.1A组12.
(二)选做题:课本第150页习题3.1B组3.
十、板书设计
随堂练习答案
1.√ × × √ ×
2.(1)单项式 ,多项式 ;
整式 ;
二项式 ;
三次三项式 ;
(2) , .
作业答案
教材P.149中A组12题:(1)三次二项式 (2)二次三项式
(3)一次二项式 (4)四次三项式
四年级观察日记400字14
一、学生起点分析
通过第一节的学习,学生已对平移的基本性质有了的认识,能否利用平移的基本性质来学习有关画图的操作技能,能否探索图形之间的平移关系成了本节课学习的重要任务。
二、教学任务分析
本节课的主要内容是通过实例,让学生经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。
教学目标
知识目标:
1.简单平面图形平移后的图形的作法.
2.确定一个图形平移的位置的条件.
能力训练:
1.对具有平移特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.
2.能够按要求作出简单平面图形平移后的图形.
情感与价值观:
1.通过画图,进一步培养学生的动手操作能力.
2.对具有平移特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.
教学重点:简单平面图形平移后的图形的作法.
教学难点:简单平面图形平移后的图形的作法.
三、教学过程设计
第一环节 复习回顾平移的基本性质,引入课题
如图,将线段AB平移,得到线段AB,则图中的线段有怎样的位置关系?有哪些相等的线段?
通过对上节课内容的回顾,帮助学生复习平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等。(AA∥BB且AA=BB, A B∥AB且AB =AB)
如果给出了线段AB,也给出了平移方向和平移距离,你能作出选段AB经平移后的对应选段AB吗?
这节课我们就来研究:简单的平移作图.
第二环节 观察操作、探索归纳平移的作法
⑴已知线段AB和平移距离及方向,求作AB的对应线段AB。
让学生观察、动手画图。
得出已知平移距离和方向的作图:过A作平移方向的平行线,在平行线上沿平移方向上截取线段,使其长度等于平移距离,即得点A的对称点A。点B的对应点B的做法同上。
(2)已知线段AB和平移后点A的对应点A ,求作AB的对应线段AB[来源:中.考.资.源.网]
和上面的(1)相比,这里的新问题,不知道平移距离和平移方向,而只知道某点的对应点,该怎么办?鼓励学生思考、交流、动手画图。
连接A,A,得到线段AA,则AA的长度就是平移距离,有A到A的方向就是平移方向。于是问题转化为前面已经解决的问题了。
在这两个问题的画图中,若有学生有不同的画法,应鼓励学生交流、讨论。这时,可以思考:“画出选段AB的方法只有(1)中的方法吗?还有没有其他的画法”。若学生在处理简单的线段问题时,画法比较单一,这个讨论可以放在(3)之后。
(3)将(2)中的图形略微复杂化一些。已知平面图形以及该图形上的某一点经平移后的对应点,求作平移后的平面图形。
例题1 经过平移,△ABC的顶点A移到了点D,作出平移后的三角形。
留给学生完成。在学生完成平移的作图后,根据前面的若干个作图问题,增加“议一议”内容。
①还有什么其他方法,作出△DEF吗?
②确定一个图形平移后的位置,除需知道原来图形的位置外,还需要什么条件?
对于①,教师要帮助学生整理平移作图的常用方法以及这些作法所依据的原理。
方法一:过点B、点C,分别作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形。
方法二:过点D分别作出与AB,AC平行且相等的线段DE,DF,连接EF,△DEF就是△ABC平移后的图形。
方法三:因为平移后的图形与原图形是全等,所以过点B作线段BE,使得它与线段AD平行且相等,得到另一个对应点E(或者过点D作与AB平行且相等的线段DE,得到另一个对应点E)后,按原方向作△ABC的全等△DEF。
对于②,确定一个图形平移后的位置的全部条件为:
(1)图形原来的位置 (2)平移方向 (3)平移距离.
这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个图形平移后的'位置,进而作出它平移后的图形.
第三环节 课堂练习
1.如图,将字母A按箭头所指的方向平移3cm,作出平移后的图形。
解:在字母A上,找出关键的5个点(如图),分别过这5个点按箭头方向作5条长3cm的线段,将所作线段的另5个端点按原来的方式连接,即可得到字母A平移后的图形。
2.
将图中的字母N沿水平方向向右平移3cm,作出平移后的图形。
3.图中的窗棂轮廓是由一个半圆和一个矩形组成,试作出这个图案向左平移10格后的图案。
解:分别确定矩形的四个顶点和半圆的圆心,向左平移10格后的位置,画半圆(以“圆心”平移后的位置为圆心,以6格的边长为直径),连线即可。
第四环节 课时小结
本节课我们通过作平面图形平移的图形,进一步理解了平移的性质,并且还知道要确定一个图形平移后的位置,需要有:①此图形原来的位置.②平移方向.③平移距离等三个条件.
在作图时,要注意语言的表达
第五环节 课后作业
1.必做习题:习题3.2 2,3,4
2.选做习题
(1)如图,正方形ABCD边长为4,沿对角线所在直线l将该正方形向右平移到EFGH的位置,已知△ODH的面积为92,求平移的距离.
(2)如图,在△ABC中,D,E是BC上的点,且BD=CE,求证:AB+ACAD+AE.
四、教学设计反思
在教学过程的设计上,通过对上节课学习的平移的基本性质的复习,为新知的探索作好铺垫,进而引出新课课题简单的平移作图。在例题的选择和设计上,循序渐进,前一题往往是后一题的基础,后一题通过化归都可转化为前一题的问题,在课堂教学中努力渗透数学中重要的思想方法化归。
在练习的设计上,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用平移的特征、平移作图的方法,从而体现数学的价值;同时,设计了不同难度的习题,提供给不同层次的学生,满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”。
四年级观察日记400字15
教学目标:
1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想
教法设计:观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.
教学重点:矩形的判定.
教学难点:矩形的 判定及性质的综合应用.
教具学具准备:教具(一个活动的平行四边形)
教学步骤:
一.复习提问:
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
二.引入新课
设问:1.矩形的判定.
2.矩形是有一个角是直角的`平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)
矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)
归纳矩形判定方法(由学生小 结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2 .矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用。(让学生思考,然后师生共同完成)
例:已知 的对角线 , 相交于
,△ 是等边三角形, ,求这个平行
四边形的面积(图2).
分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .
三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形-是矩形。
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
补充例题
例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
AC=BD
AC、BD互相平分于O
AO=BO=CO=DO
∵AE=BF=CG=DH
EO=FO=GO=HO
又HF=EG
EFGH为矩形
例2:判断
(1)两条对 角线相等四边形是矩形()
(2)两条对角线相等且互相平分的四边形是矩形()
(3)有一个角是 直角的四边形是矩形( )
(4)在矩形内部没有和四个顶点距离相等的点()
分析及解答:
(1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,
(2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形
(3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形
(4)矩形 对角线的交点O到四个顶点距离相等,如图(3),
【四年级观察日记400字】相关文章:
四年级连续观察动物日记 小金鱼观察日记04-13
观察细菌-观察日记08-08
观察日记四年级03-28
四年级观察日记10-08
四年级观察日记02-20
观察的日记10-03
观察日记10-07
观察日记01-22
观察的日记01-15
四年级大蒜观察日记07-28