高中数学说课稿《正弦定理》范文(通用10篇)
作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,编写说课稿是提高业务素质的有效途径。怎样写说课稿才更能起到其作用呢?以下是小编为大家整理的高中数学说课稿《正弦定理》范文,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学说课稿《正弦定理》 1
一、教材地位与作用
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。
二、学情分析
作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标
教学目标分析:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教法学法分析
教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
四、教学过程
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的`认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
高中数学说课稿《正弦定理》 2
一、教材分析
"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验 "观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立"数学与我有关,数学是有用的,我要用数学,我能用数学"的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的`简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用"问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)
放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。
问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)
教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。
通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。
(四)强化理解,简单应用
下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。
让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。
我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:
问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。
(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)
充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。
强化练习
让全体同学限时完成教材4页练习第一题,找两位同学上黑板。
问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。
例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1.1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
对不同水平的学生设计不同梯度的作业,尊重学生的特别差异,有利于因材施教的教学原则的贯彻。
(七)板书设计:(略)
高中数学说课稿《正弦定理》 3
大家好,我是今天的X号考生,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。因此本节的学习有着极其重要的地位。
二、说学情
合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法
通过正弦定理的推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观
在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦定理。难点:正弦定理的证明。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)导入新课
首先是导入环节,我将采用温故知新的导入方式。
复习初中学习的任意三角形中的`边和角存在什么样的关系。在学生回顾之后,再提问:能否得到这个边、角关系准确量化的表示?引出本节课学习的内容——正弦定理。
通过温故知新的导入方式,能为本节课的后续的教学做好铺垫。
(二)讲解新知
接下来是新课讲授环节,我将分为四部分,分别为在直角三角形中推导正弦定理、在锐角三角形中推导正弦定理、在钝角三角形中推导正弦定理以及正弦定理的应用。
素的过程叫做解三角形。
在介绍完正弦定理后,接下来介绍正弦定理的应用。通过提问:我们利用正弦定理可以解决一些怎样的解三角形问题呢?总结:如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边;如果已知三角形的任意两边与其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角。
整节课,本着学生为主体,教师为主导的设计理念,结合教学内容和学生的特点,利用学生已有的知识经验,采用层次性的问题,一步步引导学生思考交流、发现知识。并且在整个过程中,讲授法、引导法、合作探究等多种教学方法的使用,不但让学生学会知识,也培养学生的学习能力。通过这样的设计,提升学生学习数学的信心,提高学习数学的兴趣。
(三)课堂练习
高中数学说课稿《正弦定理》 4
一、教材分析
1.教材地位和作用
在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。 依据教材的上述地位和作用,我确定如下教学目标和重难点
2.教学目标
(1)知识目标:
①引导学生发现正弦定理的内容,探索证明正弦定理的方法;
②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。
(2)能力目标:
①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。
②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。 3.教学的重﹑难点
教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的`探索及证明;
教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段
二、教学方法与手段
1.教学方法
教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。
2.学法指导
学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。
学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。
3.教学手段
利用多媒体展示片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。
下面我讲解如何运用上述教学方法和手段开展教学过程
三、教学过程设计
教学流程:
引出课题
引出新知
归纳方法
巩固新知
布置作业
四、总结分析:
现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”. ㈡引导学生通过同化,顺应掌握新概念。
㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。
我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.
设计意:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。
谢谢!
高中数学说课稿《正弦定理》 5
高中数学正弦定理教案,一起拉看看吧。
本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.
本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.
本节可结合课件“正弦定理猜想与验证”学习正弦定理.
三维目标
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.
2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.
重点难点
教学重点:正弦定理的证明及其基本运用.
教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.
课时安排
1课时
教学过程
导入新课
思路1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,这两个等式间存在关系吗?学生可以得到asinA=bsinB,进一步提问,等式能否与边c和∠C建立联系?从而展开正弦定理的探究.
思路2.(情境导入)如,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习.
推进新课
新知探究
提出问题
1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?
2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系?
3由2得到的数量关系式,对一般三角形是否仍然成立?
4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它?
5什么叫做解三角形?
6利用正弦定理可以解决一些怎样的三角形问题呢?
活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的.建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.
关于任意三角形中大边对大角、小 边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c.从而在Rt△ABC中,asinA=bsinB=csinC.
那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画讨论分析.
如下,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB.同理,可得csinC=bsinB.从而asinA=bsinB=csinC.
(当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)
通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
asinA=bsinB=csinC
上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得a<b.当∠A、∠B都是锐角,由正弦函数在区间(0,π2)上的单调性,可知sinA<sinB.当∠A是锐角,∠B是钝角时,由于∠A+∠B<π,因此∠B<π-∠A,由正弦函数在区间(π2,π)上的单调性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.
正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.
讨论结果:
(1)~(4)略.
(5)已知三角形的几个元素(把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素)求其他元素的过程叫做解三角形.
(6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.
应用示例
例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.
活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c.
此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可.
解:根据三角形内角和定理,得
∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.
根据正弦定理,得
b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);
c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).
点评:(1)此类问题结果为唯一解,学生较易掌握,如果已知两角及两角所夹的边,也是先利用三角形内角和定理180°求出第三个角,再利用正弦定理.
高中数学说课稿《正弦定理》 6
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析
依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的`思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程
本节知识教学采用发生型模式:
1、问题情境
有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道?
可将问题数学符号化,抽象成数学形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此题可运用做辅助线BC边上的高来间接求解得出。
提问:有没有根据已提供的数据,直接一步就能解出来的方法?
思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢?
2、归纳命题
我们从特殊的三角形直角三角形中来探讨边与角的数量关系:
在如Rt三角形ABC中,根据正弦函数的定义
高中数学说课稿《正弦定理》 7
一、教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的.优越性,感受数学论证的严谨性。
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。
六、复习引入:
1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
七、教学反思
本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计。一个是问题的引入,一个是定理的证明。通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法。具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段。利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象。
3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。
高中数学说课稿《正弦定理》 8
一、教材分析:
本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的象和性质》 的第一节,是学生在已掌握了一些基本函数的象及其画法的基础上,进一步研究三角函数象的画法.为今后学习正弦型函数 y=Asin (ωx+φ)的象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用.
二、学情分析:
在初中学生已经学习过三步作法(列表,描点、连线)——“描点作”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作上的误差,很难认识新函数y=sinx的象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作提供了基础。动手作出函数y=sinx和y=cosx的象,学生不会感到困难。
三、教学目标:
依据教学大纲的要求,制订如下三维教学目标:
知识目标是:1.理解几何法作原理(难点);
2.掌握五点法作(重点);
3.了解三角函数象的变换作.
能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、
解决问题的能力;强化学生"数形结合"的数学思想.
发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于
探索、勇于创新的精神,提高综合素质.
四、设计理念:
教无定法,贵在得法.诱思探究学科教学论认为:在教学思想上是启发式,在教学过程上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞.为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣.采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法.体现“教师是主导,学生是主体”的教学原则.使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣.也只有这样做,才能适应素质教育下培养“创新型”人才的需要.
五、教学程序:
本节课的教学过程设计,主要是从“三性”即“课堂流程的可操作性,知识目标的可接受性,学生主动学习的积极性”考虑的,对整个教学过程作如下安排:
教学程序如下:
第一部分:导入.先复习以前学过的函数象的作法——描点法,再让学生观察波动象演示仪,激起学生的兴趣.指出这种形状的曲线就是今天要研究的正、余弦函数的象.如何作出该曲线呢?
以设问和探索的方式导入新课,创设情境,激发思维,让学生带着问题,有目的地参与下列教学活动.
第二部分:几何法作.引导学生在单位圆中作出特殊角的三角函数线,并进行平移,描点作.先作出 y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的象,再依据诱导公式一平移象得出 y=sinx,x∈R的象.同法得出 y=cosx,x∈R的象.
第三部分:多媒体展示.教师利用多媒体展示用Flash动画制作的>课件,规范作过程和步骤,统一认识y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的象,在此提醒学生在直角坐标系中,横、纵坐标轴的长度单位必须一致。否则画出的象不是正弦函数的真实面貌。
第四部分:“五点法”作.曲线形成后,让学生观察象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作步骤.
第五部分:总结.让学生自己总结本节课的重点、难点和学习目标,教师再补充.这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用.
如此设计,联系了新旧知识,体现了从特殊到一般,再由一般到特殊的认知规律.在这种螺旋式上升的过程中,学生将通过自己的亲自动手实践,不仅学到本节课的知识,而且还将提高思维水平和认知能力.同时也体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想.同时在教学过程中配以多媒体>课件的展示,文并茂,简洁明快,充分调动学生的各个感官,使学生学的生动,学的有趣,增大课堂容量,提高课堂效率.
为了突破几何法作这个难点,制作了多媒体>课件,将 y=sinx,x∈R
和 y=cos x,x∈R象的作法分解为三个问题来解决,降低了难度.通过展示>课件,生动形象地再现三角函数线的.平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣,调动学生的积极性(通过教学也的确是这样的).及时让学生跟着演示作,提高学生的动手能力、模仿能力、创造能力.直观的动画,不仅使学生愉快地接受新知识,而且将激发学生的创造性思维和想象力,使学生充分发挥其思维潜能,拓展思维空间.
用“三步曲”来突出“五点法”作这个重点.第一步设疑:“几何法作.由于取点个越多,画出的象也就比较精确,但也较为麻烦.在精确度要求不高的前提下,能否少定一些点,作出其简呢?”问题的提出可以立刻抓住学生的好奇心,激起学生强烈的求知欲.第二步引导:让学生观察正弦函数 y=sinx,x∈[0,2π]和余弦函数y= cosx,x∈[0,2π]的象,启发哪些点对决定象的形状起着关键的作用呢?引导学生寻找出五个关键点.体现教师的主导作用;第三步小结:让学生分组讨论,互相补充,归纳出五点法作步骤.教师对学生讨论的情况作出评价并指出作应注意的问题,然后小结:“五点法”可以比较简捷地作出正弦、余弦函数的草,对于以后研究正弦、余弦函数的性质将起到重要的作用.这样设计体现了“多动手、勤动脑、敢猜想、善发现”的学习方法,使学生真正成为教学的主体.
应用:画出下列函数的简:
(1)y=1+sinx x∈[0,2π];
(2)y=-cosx x∈[0,2π].
解:(1)按五个关键点列表:
利用正弦函数的性质描点画(如下).
(2)按五个关键点列表:利用余弦函数的性质描点作(如下).
反馈练习:
1.在同一坐标系中用五点法分别画出函数y=sinx,x∈[0,2π]和y=cosx,x[- , ]的简.通过观察两条曲线,后者经过怎样平行移动就可以得到前者?
2.观察正弦函数和余弦函数,写出满足下列条件的x的区间:
(1)sinx>0 (2)sinx<0 (3)cosx>0 (4)cosx<0
(例题、练习都用>课件展示)
本节例题仍选用教材上的例题,但解答除“五点法”之外,又引导学生利用函数象的平移对称变换来作.通过一题多解,可帮助学生加深对知识的认知程度,培养灵活的思维方式.学会遇到新问题时,善于调动所学过的旧知识,运用新旧知识间的联系,增强分析问题和解决问题的能力.
反馈练习设计层次分明:练习1为巩固基础知识型,对课堂内容知识的再认识(五点作及象变换);练习2为提高能力型,是对正(余)弦函数象的灵活运用,由易到难,体现因材施教重效果,循序渐进促发展的教学理念.
最后师生共同总结,强化数形结合的数学思想,使学生的理论达到发展和升华,能力达到提高,并为相关学科的学习做好铺垫,提高综合素质.
高中数学说课稿《正弦定理》 9
一、教学内容分析
本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。
二、学生学习情况分析
本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。
三、设计思想
教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。
教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。
教学方法:先学后教,小组合作,师生互动。
四、教学目标
知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。
过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。
情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。
五、教学重点与难点
重点:两角差的余弦公式的推导及证明。
难点:引入向量法证明两角差的余弦公式及两角差范围的说明。
六、教学程序设计
1.情境创设,课上展示。
课前探究:
课上展示:请同学们展示一下课前所得到的结果吧。
设计意:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。
主要目的:让学生自主发现两角差的余弦公式的表达形式。
通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。
2.合作探究,小组展示。
探究一:两角差的余弦公式的推导
问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?
问题5:观察我们得到结论的形式,你能联想到什么呢?
探究二:两角和的余弦公式的推导
问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?
问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?
通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。
3.巩固知识,例题讲解。
例1:利用两角和与差的余弦公式证明下列诱导公式:
例3:化简cos100°cos40°+sin80°sin40°
设计意:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。
例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。
变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的.值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。 例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。
4.提升总结,巩固练习。
提升总结:针对上面的3个例题,谈谈你学到了什么?
(2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。
(3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。 设计意:主要以学生总结为主,老师做适当点评及补充。
七、教学反思
本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是
但是如果给出像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。
高中数学说课稿《正弦定理》 10
一、教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的`意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
【高中数学说课稿《正弦定理》】相关文章:
高中数学《正弦定理》说课稿11-11
《正弦定理》高中数学说课稿11-30
高中数学《正弦定理》说课稿(4篇)11-28
高中数学《正弦定理》说课稿(精选4篇)11-28
高中数学《正弦定理》说课稿4篇11-11
《正弦定理》高中数学说课稿3篇11-30
高中数学说课稿《正弦定理》4篇07-13
初中数学《勾股定理的逆定理》说课稿11-21
初中数学《勾股定理》说课稿06-25
初中数学勾股定理说课稿整理02-18