初中数学《菱形的判定》说课稿范文
作为一名默默奉献的教育工作者,就不得不需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。如何把说课稿做到重点突出呢?下面是小编整理的初中数学《菱形的判定》说课稿范文,仅供参考,希望能够帮助到大家。
一、说教材
本节课选自人教版八年级下册第十九章第二节第二课时,主要内容是菱形的判定,让学生尝试从不同角度寻求菱形的判定方法,并能有效地解决实际问题。它是在探究平行四边形和矩形的判定方法之后,又一个特殊四边形判定方法的探索,它不仅是三角形、四边形知识的延伸,更为探索正方形的性质与判定指明了方向。本节课通过学生观察猜想,小组讨论合作交流后归纳证明得出结论,培养学生的推理能力和演绎能力,为以后圆等知识的学习奠定基础。
二、说学情
我从初一开始就对学生进行数学理念数学思考数学意识的培养,所以在新知识的接受方面学生还有一些优势,本节课根据这些特点适当的进行了难度的设计和环节上的考虑。从认知状况来说,学生在此之前已经学习了平行四边形的判定,对判定有了初步的认识,这为顺利完成本节课的教学任务打下了基础,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以自己在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性,让学生愉快地学习。
三、说教学目标
根据本节课的教学内容,结合新课标理念,我从四个方面制定了教学目标:
(一)知识技能:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.
(二)过程方法:经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力.根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力.尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异.通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验。
(三)情感态度:在探究菱形的判定方法的活动中获得成功的体验,从成功中体会研究数学问题的乐趣,让学生学会主动寻求解决问题的途径,从而增强学生学习数学的兴趣,树立学好数学的信心。通过运用菱形的判定和性质,积累数学活动经验,提高学生科学思维素养,进而教会学生如何学习数学的能力和习惯。
四、说教学重点、难点:
基于本节课的主要内容是围绕着菱形的判定方法而展开的,菱形的判定方法在本节课中处于核心地位,所以我确定本节课的教学重点为菱形判定方法的探究。由于学生还没有具备辨证分析问题的能力,所以我确定本节课的教学难点是菱形判定方法的探究及灵活运用。
根据教学目标,为突出重点,突破难点,在探索菱形的有关对角线的判定定理时,用教具演示,四边形的两条对角线在保持互相平分的前提下进行转动,当它们的位置关系是垂直时,平行四边形变为菱形,给学生以直观感受,印象深刻;在探索菱形的另一个判定定理时,让学生根据它的特殊点去猜想边之间满足的关系,从而得出定理,拓展学生的思维空间。
五、说教法
教法:从教师教的角度,要注重启发式教学。在教学过程中,教师是学习的组织者、指导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
学法:从学生学的角度,提倡自主、合作和探究学习。在教学过程中,学生是学习的主体,让学生体现知识的发生、形成、发展过程,体会到探究——发现——归纳——验证的学习方式和数形结合的思想,培养学生的独立学习的良好习惯。同时,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
六、说教学过程
活动1、提出问题,激发兴趣
首先,复习菱形的定义和性质,学生对菱形再认识,尤其对菱形的特殊性质的认识。通过教师恰当设疑并进一步讲授,明确菱形的第一种判定方法,直接引入了活动主题。同时,引出课题——菱形还其它的判定方法吗?激发学生探究的欲望。
活动2、尝试发现,探索新知
让学生真实经历菱形判定方法的形成过程,设计了一个探究活动。用一长一短两根细木条的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。
教师引导学生观察四边形的特征,通过观察,发现这个四边形总是平行四边形,并口头完成证明。学生继续转动木条,探究木条具备怎样的条件就可变为菱形,学生经过实验操作,开展独立思考或合作学习。学生代表上台对猜想(即当木条互相垂直时,四边形为菱形)加以论证。体现知识的发生、形成、发展过程,体会到探究——发现——归纳——验证的学习方式和数形结合的思想。通过由浅到深,由简到繁的思考过程,加强训练,拓宽学生的思路,发展学生的思维能力,归纳菱形的判定定理:对角线互相垂直的平行四边形是菱形。
设计意图:通过实验操作,巩固了平行四边形的判定方法,培养学生的观察能力和推理能力,经历探究物体与图形的形状、大小、位置关系和变换的过程,学生的猜想意识,感受直观操作猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力;通过对猜想的论证,让学生进一步认识逻辑推理的必要性,很好地突出了教学的重点。A活动3、自主分析,深入探究。
例3、如图,□ABCD的对角线AC、BD相交于点O,且DBAB=5,AO=4,BO=3,求证:□ABCD是菱形。学生分析题意,通过交流,明确解体思路。教师组织学生交流,并引导学生选择适当的判断方法,指导学生完成论证,并规范证明。C设计意图:从简单问题出发,让学生在证明过程中掌握菱形的'第二种判别方法的应用,达到“学数学,用数学”的目的,进一步培养学生解决问题能力和推理论证能力。
活动4、探究与归纳菱形的第三个判定方法
先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?
学生观察思考后,展开讨论,共同寻求这个四边形是菱形的原因。教师深入到学生当中,指导学生探究。学生代表发言,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形,教师指导学生规范完成几何论证过程。
设计意图:通过多媒体动画演示,让学生从直观操作的角度去发现问题,使探究的问题形象化、具体化,培养学生形象思维。通过说明理由,利用平行四边形的判定和菱形的定义,判定该四边形是菱形,进一步培养学生抽象思维,本活动进一步体现了实验几何和论证几何的有机结合。
活动5、菱形第三个判定方法的应用
如图,顺次连接矩形ABCD各边的中点,得到四边形EFGH。
求证:四边形EFGH是菱形。
学生独立思考,教师点拨证明的思路。学生板演,教师点评。
设计意图:通过添加教师教学用书上的一道范例题,学生在做题之后,进一步掌握四边相等的四边形是菱形的这一判定方法。
既巩固了三角形的中位线定理和矩形的性质,又达到了学以致用的目的,培养了学生的应用意识。
活动6、反馈练习,夯实基础几道简单的判断题和填空题,教师巡视,引导学生;学生课堂练习,然后上台演示自己的答案,并与同伴交流,给学生一个独立的思考和练习时间,加深学生对菱形判定方法的理解与运用,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,达到及时查漏补缺的效果。
活动6:小结评价,畅谈收获
强化学生对知识的理解和记忆,初步培养学生的自我评价能力。鼓励学生从三个方面总结。知识点、易错点以及数学思考。
活动7:布置作业学以致用
留分层作业,适当加点难度。通过基础作业巩固所学知识,通过选作作业为学有余力的学生创设发展空间。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
七、说板书设计
设计意图:主要体现板书的示范性、规律性、科学性、艺术性。让学生感受到学习的重点内容,在大屏幕辅助的同时,体现学习的快乐并体现本节课的精华。
总之,本节课的教学,我重点关注教学目标的完成情况,更关注学生的参与状态、思维状态、课堂生成的情况,及时准确的把握学生的思维,把教师的作用准确地加入到学生的学习状态中。在传授知识的同时,注重培养学生的数学能力和数学学习方法。培养学生主动探索,敢于实践的创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研究数学问题的乐趣,从而增强学生学习数学的兴趣,树立学好数学的信心。让学生体会到学习数学的价值和乐趣,让学生真正地感受到学习数学的重要性:数学来源于生活,又应用于生活。
【初中数学《菱形的判定》说课稿范文】相关文章:
《图形的平移》初中数学说课稿范文12-10
初中数学《完全平方公式》说课稿范文02-02
初中数学《绝对值》说课稿范文11-13
初中数学《单项式的乘法》说课稿范文02-03
初中数学说课稿-《数轴》12-12
初中数学优秀说课稿《垂线》11-11
精选数学说课稿初中范文10篇07-07
数学说课稿初中范文十篇07-07
关于数学说课稿初中范文六篇06-21
关于数学说课稿初中范文八篇06-21