初中数学一次函数说课稿

时间:2023-05-27 15:33:46 耿烽 初中说课稿 我要投稿
  • 相关推荐

人教版初中数学一次函数说课稿(精选10篇)

  作为一位杰出的教职工,很有必要精心设计一份说课稿,借助说课稿可以有效提高教学效率。那么优秀的说课稿是什么样的呢?以下是小编为大家收集的人教版初中数学一次函数说课稿,欢迎阅读,希望大家能够喜欢。

人教版初中数学一次函数说课稿(精选10篇)

  初中数学一次函数说课稿 1

  一、说教材:

  1、教材所处的地位和作用:

  《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。一次函数的图象加强了代数与几何的联系。

  2、教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)、知识目标:

  1)了解正比例函数y=kx的图象的特点。

  2)会作正比例函数的图象。

  3)理解一次函数及其图象的有关性质。

  4)能熟练地作出一次函数的图象。

  (2)能力目标:

  通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。

  (3)情感目标:

  通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的参与意识,团结合作的精神和学习数学的兴趣。使学生了解数学知识的功能与价值,形成主动学习的态度。

  3、说教学重点、难点:

  1、从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。

  2、由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。

  二、说教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:应着重采用数形结合的教学方法。即:数形结合——列举归纳法、由特殊到一般的方法、类比法。根据本课时的教学内容特点以及本班学生的实际,我采用启发式、讨论式等教学方法。在引入新课时,通过复习一次函数的图象的知识,引导启发学生观察一次函数的图象特征,分析图象的特征与一次函数的自变量、因变量的联系,归纳出一次函数的性质,使学生由感性认识上升到理性认识。在归纳一次函数的性质时,采用讨论式教学法,充分调动学生的积极性参与到对一次函数的性质的讨论中,再根据学生的讨论归纳情况进行适当的补充。整个教学过程采用愉快教学法,营造一个轻松愉快的课堂气氛,充分调动学生的情感因素,努力实现“师生互动”、“生生互动”以求达到较好的教学效果。

  三、说学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力。要让学生由“学会”到“会学”。通过本节课的`教学,指导学生掌握一些基本的学习方法,运用数形结合的研究方法探索函数知识;通过相互交流讨论,团结合作等方式,培养学生的自学能力和合作能力,增强学生的参与意识,使学生会运用观察、分析、比较、归纳、总结等方法探索数学知识。

  四、说学情

  本班学生整体素质不高,课堂参与、自主探究意识不强。初二学生正处在感性认识到理性认识的转型期,对一次函数的性质的理解存在很大的困难。

  五、说教学程序

  1、复习回顾

  启发学生回忆:“一次函数Y=kx+b(k≠0)的图象是一条直线”,同时强调一次函数的图象的位置是由常数k、b决定,从而很自然地引入新课。

  2、新知探索

  先给出一组一次函数解析式,引导学生动手画出它们的图象,然后带出问题并引导学生观察图象,结合图象进行交流讨论,最后归纳总结一次函数的性质。

  (1)在同一直角坐标系中画出下列函数的图象

  (1)Y=2x+1,(2)y=-2x-1,(3)y=3x+2(4)y=-3x+2

  (2)引导学生带着问题观察图象、探索一次函数的性质

  问题1:从左到右,随着x增大,函数y=2x+1和y=3x+2的图象上的点的位置有什么变化?函数值y又有什么变化呢?

  问题2:同样,随着x的增大,函数y=-2x-1和y=-3x-2的图象上的点有什么变化呢?函数值呢?

  问题3:为什么会有这样的差别呢?

  3、归纳总结

  (1)当k>0时,y随着x的增大而增大,这时函数的图象从左到右上升;

  (2)当k<0时,y随着的x增大而减小,这时函数的图象从左到右下降。

  3、课堂练习

  课本P45的“做一做”及练习的第1、2题,这些练习是为了加深学生对一次函数的性质的理解,紧紧抓住了本课时的重点。

  4、小结

  引导学生回顾本课时所学知识,进一步加深对一次函数的性质的理解。

  六、说反思

  在整个备课过程中,我力求做到既要备好教材又要备好学生,努力做到既紧进围绕本课时的教学重点又要结合本班学生实际。但作为以为年轻教师还缺乏教育教学经验,还有很多地方向同行学习,特别是教学语言、教学方法、课堂组织等方面更要学习。

  初中数学一次函数说课稿 2

  一、分析教材与学生:

  这是华师大八年级数学(下)第17章第3节中的一堂课。本节课是在学生学习了平面直角坐标系、函数的图象,一次函数及其图象的基础上学习的,它既是对前面知识的延续,又是为后面学习反比例函数、二次函数的性质作铺垫,也是今后学习高中代数,解析几何及其它数学分支的重要基础。在教材中起着承上启下的作用。其中所渗透的“数形结合”,归纳等数学思想方法是对学生的数学有重要的作用。学生在理解图象的性质,以及运用数形结合的思想解决问题,感到困难。结合以上分析,确定本节课的重难点为:

  教学重点:结合图象,使学生进一步理解一次函数的图象和性质;

  教学难点:根据图象的性质来解决一些实际问题。

  教学关键:利用数形结合的思想,辅以电脑演示动画,变抽象为形象,注重知识的形成、发展过程,使学生在这些过程中展开思维,从而突出重点、突破难点。

  二、教学目标:

  ①知识目标:1、理解一次函数图象的性质,及学会性质判断函数值大小。

  2、学会待定系数法求一次函数解析式

  ②能力目标:培养学生观察、分析的能力,数形结合能力,化归能力,及与他人合作学习能力,培养学生创造性思维和逻辑推理的能力。

  ③情感目标:体现了知识来源于实践,而又运用于生活,同时渗透转化的思想,让学生体验客观事物是不断运动发展变化,而事物之间总是互相联系,互相制约的辩证唯物主义观点

  三、陈述教学设想:

  1、教法分析:本节课基本设计思路是着力于学生探索知识、体验知识发生、发展形成过程,通过创设探索学习情境,组识学生小组讨论、合作,让学生经历“尝试——猜想——验证”的过程中接受知识。获取知识。教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

  2、学法分析:通过让学生社会调查,收集有关资料等活动设计,引导学生观察、发现、转化,并在学生动手实践,自主探索,合作交流的基础,培养其互相协作能力,达到教法与学法的有机结合。以学生为主体,通过自主探索的方法,引导学生通过实践、思考、探索、交流获得知识,形成技能。培养学生动手,动口,动脑的能力。

  ①学会通过观察、比较、推理能概括一次函数的图象与性质。

  ②学会利用旧知转化成新知,解决新问题的能力。

  ③学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

  3、用及课程资源开发:本课将采用多媒体课件教学、辅之于投影图片等

  四、教学过程:

  (一)创设情景,引入课题:

  1、教师事先让学生利用课余时间到去了解联通公司手机使用收费情况,提出问题

  (1)联通的月租费是多少?

  (2)每分钟费用又是多少?

  在这基础上,让学生自己设计一个问题,然后能用函数关系来表示,从而引出诸如像y=30+0.3x等关系式组织学生讨论,生活中这样的函数关系式还能写出一些吗?

  2、教师让学生算一算,取10分、20分时所化费用并比较y1与y2的大小,我们可以从图象上又更直观地判断函数值的大小,从而引出课题:一次函数的性质(出示课题)

  (二)师生互动,探求新知

  (1)先让学生画出y=30+0.3x(x≥0)图象

  (2)让学生先独立思考,提出问题

  ①图象的位置从左到右是怎样变化的

  ②函数的值随着x又如何变化?在此基础上,组织四人小组讨论

  (3)交流阶段,每组派代表上台发表汇报本小组成员的探索与成果,同时回答其他小组同学的提问

  (4)教师又让学生自己画出y=—x+2,及y=—2x—1的图象,并再次组织讨论。

  最后,教师根据刚才学生讨论交流情况,用多媒体显示,学生得到的一次函数的性质

  ①K>0时,y随x的增大而增大,这时函数的图象从左到右上升

  ②K<0时,y随x的增大而减小,这时函数的图象从左到右降低

  (5)这时教师又带领学生回到课一开始时提出的问题让学生学会从图象上观察,函数值的大小,从而培养数形结合能力,及应用能力,也能使所学知识得到及时巩固。

  (三)面授调节,练习反馈

  1、教师用多媒体显“做一做”然后组织学生独立完成

  2、巩固一次函数的性质,设计如下练习

  (1)y=(m-4)-2,当m取何值时,y随x的增大而增大

  (2)y=(m+0.5)xm2+1是一次函数,且y随x的增大而减小,求m值

  (3)图象上有两点(—1,a),(3,b)请比较a、b的`大小

  (这题练习鼓励学生运用多种方法解决,然后让他们自己比较方法好坏)

  (4)设计一个实际应用题,让学生运用刚学的新知识尝试解决。

  (5)讲解课本例题,简要介绍待定系数法,及如何用“两点法”求一次函数解析式。

  3、同桌之间互相出题,再次巩固性质

  设计练习如下,已知一次函数图象如图如示,求一次函数解析式。

  (四)、梳理知识,系统归纳

  1、归纳总结:①哪些函数y随x的增大而增大?哪些函数y随x的增大而减小②与系数k、b的符号有何关系?③小结后填表

  图象的位置性质相同点

  2、提问:①通过这一节课学习,大家有哪些体会和收获?

  能说说吗?

  ②这节课你能用所学的一次函数的性质来解决生活中的实际问题吗?

  ③这节课我们学习了哪些数学思想方法?

  (同桌对讲、畅谈自己的感受和体会、学生发言,教师归纳、总结)

  (五)布置作业

  1、必做题见作业本(A)

  2、选做题:①A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城往C、D两地运费分别为20元/吨和25元/吨,从B城运往C、D两地运费分别为15元/吨和22元/吨,现已知C地需要220吨,D地需要280吨,如果某个体户承接这项运输业务,请你帮他算算,怎样调运花钱最少。

  3、写一篇有关“一次函数性质”的小论文。

  (六)、板书设计:

  一次函数的性质

  性质:

  小结:

  教师作图演示区

  表格:

  (七)说评价:

  学生学习数学的过程是一个基于学生经验的主动建构的过程。新课程理念下的教学过程是生生、师生交往,积极互动的过程。使学生通过互动得到其相应的发展是我们进行教学的根本宗旨,同时,学生之间互相合作,彼此获得双赢,我们所采取的一切方法都是为这个宗旨服务的,我们教师怎样才能在“动”的课堂时刻把握方向引领学生,到达发展学生的彼岸,是我们必须思考的问题。“关注学生的生活,认识经验”是新课标所提倡的,在本堂课设计中,我力图体现上述宗旨。

  (八)教学设计说明

  本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。基于这一原则,我对本节课教学设计的指导思想如下:

  ⑴以实现教学目标为前提:强调学生双基的培养以及思想品德教育,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

  ⑵以现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。

  ⑶以基本的教学原则作指导:充分发挥学生的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知。

  ⑷以先进的现代信息技术为手段:适当地辅以先进的电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化。

  初中数学一次函数说课稿 3

  一、 教材分析

  (一)本节内容在教材中的地位和作用

  本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

  本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

  (二) 教学目标

  基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

  知识目标:

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会利用两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质。

  能力目标

  1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度目标:

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的'活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  (三)教学重点难点

  教学重点:一次函数的图象和性质。

  教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

  二、教法学法

  1、教学方法

  1.自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

  目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

  2.直观教学法——利用多媒体现代教学手段。

  目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

  2、学法指导

  1.应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

  2.指导学生观察图象,分析材料。培养观察总结能力。

  三、 教学程序设计

  (一)、创设情境,导入新课

  活动1:观察:

  展示学生作的函数图象 (课本P41 做一做),强调列表及图象上的点的对应关系。

  1、课前让两名学生将图像画到黑板上,以备上课时应用。

  2、课上展示学生函数图像作业 ,既为学生完成作业情况检查,又为本节课打下基础。

  这样安排的目的:

  1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

  2、教师对学生有了更深层次的了解,能更好地把握课堂。

  (二)尝试探索、体验新知:

  活动2、观察探索:

  比较两个函数图象的相同点与不同点?

  第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

  目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

  第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现"直线y=--6x+5与坐标轴交点"并思考:一次函数y=--6x+5又如何作出图象?

  目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

  活动3:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

  目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

  活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)

  目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

  活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

  目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

  (三)课堂小结

  引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

  目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

  (四)。作业布置

  加强"教、学"反思,进一步提高"教与学"效果,做课本42页 44页习题。

  初中数学一次函数说课稿 4

  一、说教材

  《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。从知识内容来说,本课是对函数的进一步认识与综合,进一步发展学生的抽象逻辑思维,渗透建模思想。函数本身是反映现实世界变化规律的重要模型,教材在编排上充分体现了从实际生活情境中抽象数学问题,建立模型并形成概念的过程,并将正比例函数纳入一次函数的研究中,力图通过实例从代数表达式的角度认识一次函数。从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。本课的知识起到了承前启后的作用,也符合学生的认知规律。

  二、说学情

  八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系 。

  因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

  三、说教学目标

  教学目标是教学活动实施的方向和预期达到的结果,是一切教学活动的出发点和归宿。精心设计了如下的教学目标:

  (一)知识与技能

  理解一次函数和正比例函数的概念,体会之间的联系,并能根据已知生活情境给出一次函数解析表达式,发展抽象概括能力。

  (二)过程与方法

  经历动手试验、规律探索的活动过程,提高抽象思维能力,并借助于将实际生活情境转化为数学问题,渗透建模思想。

  (三)情感态度与价值观

  在知识的探求过程中提高学习数学的兴趣,提高数学的应用意识。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

  (一)教学重点

  一次函数和正比例函数的概念。

  (二)教学难点

  能根据具体生活情景给出具体一次函数解析表达式。

  五、说教法和学法

  在教学过程中不仅要使学生“知其然”,还要使学生“知其所以然”。我们在师生极为主体也为客体的原则下展现获取理论知识,解决实际问题方法的思维过程。

  基于本节课内容的特点,我主要采用的教法有:

  情境教学法:借助具体情境等活动形式获取知识,以学生为主体,使学生的独立探索性得到充分发挥。

  讲解法:通过口头讲解、扼要板书,向学生描述情境,叙述事实,阐明规律,有利于系统获得新知。

  练习法:学生自主练习,夯实理论知识的基础上实现灵活运用。

  在教学中,精心设计每个教学环节,引导学生积极地参与讨论、合作交流,各抒己见。这样既能启迪思维,又增加了合作的意识,形成平等、宽松、民主的学习氛围。同时也能让学生动手、动脑去探索发现,并解决问题,真正体现以学生为主体的教学理念。在特定的情境中学习能激发学生学习兴趣,激发学生思维,转变学生的学习方式,变要我学为我要学。因此在学法上我采用的是小组讨论法、分析归纳法、总结反思法。

  六、说教学过程

  教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:

  (一)导入新课

  在这一环节,我会借助生活中所熟悉的情境引发学生独立思考,并要求学生尝试给出具体函数解析表达式。

  问题1: 我校初二年级组织学生到距离学校6千米的动物园参观,小茗同学没赶上学校的包车,于是打算改乘出租车。出租车的收费标准如下:行驶3千米以内(含3千米)收费7元;超过3千米,每增加1千米,另收1.6元。思考:行驶千米数x和车费y(元)之间存在的函数关系?

  问题2:某弹簧的.自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克,弹簧长度y增加0.5厘米,思考:x与y的函数解析表达式?

  问题3:给汽车加油的加油枪流量为25L/min,用y(L)表示油箱中的油量,x(min)表示加油的时间,如果加油前油箱里没有油,那么在加油过程中,油箱里的油量与加油时间之间有怎样的函数关系?如果加油前油箱里有6L油,函数关系式又是?

  此时学生将生活实际问题抽象成数学模型,给出函数解析表达式: 1、y=7+1.6(x-3)=1.6x+2.2;2、y=3+0.5x;3、y=25x、y=25x+6。下面要求学生对上述解析表达式观察并尝试指出变量与常量、因变量与自变量,对表达式进行总结归纳,得出共同特征: 左边都是因变量y,右边是含自变量x的代数式,自变量和因变量的指数都是一次。在此基础上提问,如果将上述解析表达式中的常量用k和b来替换,如何书写函数解析表达式来引导学生总结归纳、建立概念,顺势引入课题。

  (设计意图:在这一环节,借助生活中所熟悉的情境来构建数学模型,尝试给出函数解析表达式,总结归纳,建立概念。一方面可以回顾之前所学的函数知识,指出变量与常量、自变量与因变量,另一方面可以培养学生总结归纳,概括能力。)

  (二)探究新知

  在这一环节,就前面所提出的问题建立概念:一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数,其中x是自变量,y是x的函数。特别地,当b=0时,y=kx(k为常数,且k≠0),y叫做x的正比例函数。紧接着对正比例函数和一次函数解析表达式的结构特点引导学生尝试总结其联系和区别,总结得出:正比例函数是特殊的一次函数,而一次函数不一定是正比例函数。

  接下来借助师生活动,要求学生用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数,能根据所给条件写出简单的一次函数表达式。

  1、 正方形面积S随边长x变化而变化;

  2、 正方形周长l随边长x变化而变化;

  3、 长方形的长为常量a时,面积S随宽x变化而变化;

  4、 高速列车以300km/h的速度驶离A站,列车行驶的路程y(km)随行驶时间t(h)变化而变化;

  5、如图,A、B两站相距200km,一列火车从B站出发以120km/h的速度驶向C站,火车离A站的路程y(km)随行驶时间t(h)变化而变化;学生独立思考,踊跃回答,发现1不是一次函数;2是正比例函数,解析表达式为l=4x;3是正比例函数,S=ax,其中a为常数;4是正比例函数,y=300x;5是一次函数,y=200+120t。

  紧接着乘胜追击要求学生找出上述一次函数解析表达式中的k、b的值。在学生回答的基础上,即时巩固一次函数的概念,并强化对k、b的认识。

  为了夯实对一次函数概念的理解,并发展建模意识,启发学生思考独立思考,小组合作,并实时点拨,最后请小组代表发表组内结果。出示例题:一盘蚊香长105cm,点燃后,每小时缩短10cm,

  1、写出蚊香点燃后的长度y(cm)与蚊香燃烧时间t(h)之间的函数表达式;

  2、该盘蚊香可燃烧多长时间?

  学生分析题干中的已知条件,建立等量关系,得出蚊香点燃后,每小时缩短10cm,t小时将缩短10t cm,所以蚊香点燃后的长度与燃烧时间之间的函数表达式为:y=105-10t;若蚊香燃尽,即y=0,由105-10t=0可得,该盘蚊香可燃烧10.5小时。

  (设计意图:本环节尝试引导学生在层层设置的问题串中寻求答案,认识一次函数,并能找出其中k、b的值,从而让学生真正体会一次函数的数学应用价值。此外借助师生活动、独立思考,尝试发现,理解一次函数和正比例函数的差异,加以区别。此过程充分调动学生学习数学的积极性,也有利于学生在新知中尽情地探索。此外通过设置活动,引导学生动手操作、动脑思考、小组讨论来发现数学问题,并自主验证结论,最后师生共同归纳得出结论。整个环节让学生明晰了数学问题的探究过程。)

  (三)深化新知

  请学生思考:正比例函数和之前所学的正比例是否为同一概念?

  学生结合之前的知识,体会正比例函数是指形如y=kx+b(k、b为常数,且k≠0),且b=0时,此时y=kx(k为常数,且k≠0),则y叫做x的正比例函数,而正比例是两个变量之间的关系,当一种量变化,另一种量也随之变化,如果这两种量相对应的两个数的比值一定,则这两个量就成为成正比例的量,它们的关系叫做成正比关系。

  (设计意图:本环节在夯实学生旧知的基础上对学生易混淆的知识点进行整理,有利于学生建立良好的逻辑知识体系。)

  (四)巩固提高

  在这一环节,我会设置随堂练习:

  我国目前实行个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于4000元的部分征收3%的个人所得税,如某人每月收入为3900元,则他应缴个人工资、薪金所得税为(3900-3500)x3%=12元。

  1、当月收入大于3500元而小于4000元时,写出应缴纳的所得税y(元)与收入x(元)

  之间的关系式;

  2、某人月收入为3850元,他应缴纳的所得税是多少元?

  要求学生独立完成,同桌互相交流,教师适时纠正答案。

  (设计意图:通过这样的变式练习,深化认识一次函数的同时,也容易激发起学生的探索欲望。而且这个环节教师充分指导学生汇报展示,完成任务,将学习的主动权完全还给学生,让学生真正成为学习的主人。)

  (五)小结作业

  在小结环节,我会让学生回答以下问题:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

  (设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获。小学的课堂应着重让学生体会知识的获得过程,并能真正学会将所学的知识应用到实际生活,能发现生活中的数学问题。)

  而作业环节,请同学们完成练习题目,实现对课堂知识点的实时巩固。

  1、在函数y=-2x-5中,k=,b=;

  2、在一幢25层高的建筑物,如果底层高6米,以上每层高4米,求楼高h(米)与层数n之间的函数关系式,并写出自变量的取值范围。

  七、说板书设计

  我的板书本着简洁、直观、清晰的原则,这就是我的板书设计。

  初中数学一次函数说课稿 5

  大家好!我今天说课的内容是xxx版八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

  一、教材分析

  1、教材地位和作用

  本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

  2、教学目标分析

  根据新课程标准,我确定以下教学目标:

  知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

  过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

  情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

  3、教学重难点

  本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

  二、教法学法分析

  八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术----多媒体和实物投影。

  三、教学过程分析

  本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

  为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:

  (1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为 m=6t .

  (2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为 y=-2x .

  (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为 y=2x+3 .

  (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为 Q=936-312t .

  然后请学生观察这些函数,它们有哪些共同特征?

  m=6t;y=-2x;y=2x+3;Q=936-312t

  学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

  然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。

  这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。

  提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显, x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k≠0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k≠0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。

  由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它取0时为正比例函数,也可以这样说:所有形如y=kx+b(k≠0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k≠0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。

  为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:

  做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?

  ①c=2πr;②y=x+200;③t=;④y=2(3-x);⑤s=x(50-x)

  做完此题教师应强调:①中π为常数,所以比例系数为2π;④、⑤应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。

  例1:求出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正比例函数?

  ①某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。

  ②正方形周长x与面积y之间的关系。

  ③假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。

  例1应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教师对于学生的一点点闪光点都要予以肯定。

  接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。

  此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。

  此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。

  以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。

  由于例2是本节课的教学难点,里面的问题情景比较复杂,学生一下子难以适应,于是我对例2进行这样处理:

  先请同学们看屏幕:教师用多媒体出示一份国家2006年1月1日起实施的有关个人所得税的有关规定的材料,同时还附上一份税率表。

  然后问学生:哪位同学知道什么叫全月应纳税所得额,如果有学生讲出来更好,如果没人讲出来,教师自己介绍:应纳税所得额是指月工资中,扣除国家规定的免税部分1600元后的剩余部分。

  为了提高学生的学习兴趣,教师说:你想知道我们班数学老师和科学老师每月应缴个人所得税多少吗?老师们的隐私同学们是最想知道的,于是急着解决问题。

  我班数学教师的工资为每月2400元,科学老师的工资为每月2600元,问他俩每月应缴个人所得税多少元?

  相信学生很快就有答案(因为这节课我上过),并且方法几乎一致,都是用直接列算式的方法。教师对学生们的结果表示肯定,接着问:如果要计算10个工资均在2100元—3600元之间的教师每月应缴的个人所得税呢?还用直接列算式的方法吗?如果工资均在10000元以上呢?

  经过思考、讨论,发现工资额越大,计算应缴个人所得税的累计越麻烦,于是讨论有没有一种比较简单方法,如果有类似于计算公式的,把工资额直接代入就可求出的,那该多好啊!

  此时教师出示例2:按国家2006年1月1日起实施的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10%.

  (1)设全月应纳税所得额为x元,且500

  (2)小明的妈妈的工资为每月3400元,小聪妈妈的工资为每月3600元,问她俩每月应缴个人所得税多少元?

  有了刚才的铺垫,学生对此题有了深入的'理解,就不再害怕了,教师可先由学生回答,再自己补充。可以这样分析:由于500

  此题的设计使学生体会到了运用函数模型解决实际问题的重要性,但某些爱动脑筋的同学可能会问:虽然运用函数可以解决一些实际问题,但方程也是解决实际问题的重要数学模型,它们有什么区别吗?怎样区别?拿到一道题怎么会想到用函数来解决,简单地说,如果没有特殊说明,能用方程解决的问题就用方程来解决,不能用方程来解决的问题就马上想到用函数来解决。但如何建立函数模型,具体的方法我们下节课再学习。

  本例的设计使学生既了解了国家的政策法规,又学会了用函数来解决实际问题,通过计算老师们的应缴个人所得税,让学生初步体会了个人所得税的计算方法,再假设要求多数人的所得税,激发了学生探求好方法的欲望,使学生体会到了函数的作用。

  为了使学生学有所用,就来完成书上课内练习2.

  最后在教师提问的基础上,让学生对本节内容进行归纳总结。

  本节课的作业是分层布置:A组、B组、C组分别由班里的三个不同层次的同学完成。

  四、设计说明

  本节课通过创设问题情境,归纳总结得出一次函数的概念,同时利用一次函数解决了生活中的实际问题。整节课没有大量的练习为基础,而是以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以概念讲解为载体,以展开思维分析为主线,在课堂教学中,教师充分调动一切因素,让学生在和谐,愉悦的氛围中获取知识,掌握方法!整个教学既突出了学生的主体地位,又发挥了教师的指导作用。

  初中数学一次函数说课稿 6

  今天,我说课的内容是苏科版八年级上册中的《二元一次方程与一次函数》的第一课时。我打算主要从“说教材,说教法,说学法,说过程”这四大块内容来谈谈我的设计。

  一、说教材

  (一)教材分析(所处的地位及作用)

  “二元一次方程与一次函数”是在前面学习了“一次函数”与“二元一次方程”的基础上来学习的。是对前面“一次函数”和“二元一次方程”的一次提高和升华,也为以后进一步学习“用二次函数图象求一元二次方程的近似解”作铺垫。其中用到的“数形结合”思想是我们中学学习数学的重要思想之一,也是我们数学学习中经常用来解决一些实际问题的重要手段。

  (二)教学目标:

  (1)使学生初步理解二元一次方程与一次函数的关系。

  (2)能利用二元一次方程组确定一次函数的表达式。

  (3)能根据一次函数图象求出二元一次方程组的近似解。

  (4)进一步培养学生画图,识图能力;培养学生初步的数形结合意识和能力。

  (三)教学重点、难点;

  重点:

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  难点:

  1、二元一次方程和一次函数之间的对应关系即数形结合的意识和能力。

  2、二元一次方程的解与一次函数图象交点坐标之间的对应关系。

  二、说教法

  本节课我通过与学生一起探讨问题,解决问题,以达师生互动的效果。引导学生从已有的知识和生活经验出发,提出问题,让学生自己动手操作,发现问题,解决问题,从而归纳出解决问题的一般方法。

  针对本节课的重点,难点“二元一次方程(组的解)与一次函数图象(的'交点坐标)之间的对应关系”,由于其理解难度大,因此我准备采用“创设情境”用问题串的形式引导学生动手操作、自主探索来研究发现“二元一次方程(组的解)与一次函数图象(的交点坐标)”两者之间的内在联系。对于书上出现的例1:准备先通过学生自己思考,教师引导评讲最终解决问题;对于书上的练习,主要通过学生自己练习,以达到“巩固知识”的目的。

  三、说学法

  在本节课开头,我以学生原有的知识作为基础,创设有助于学生探索思考的问题情境,引导学生用“探索————研究————发现”的方法,来获得知识,掌握知识。不过在这个过程中,可能学生的自主探究能力比较差,因此在这方面我打算更多的引导以解决学生不足之处,发现问题,解决问题的能力得到了进一步的发展;同时也培养了学生积极思考,认真探索的良好学习习惯。

  四、说过程

  这节课我就首先从学生已学过的二元一次方程联想到一次函数出发提出问题:二元一次方程、一次函数、直线的关系。接着通过对书上的问题串让学生进行合作交流的探索和师生的共同探索得出:

  ⑴二元一次方程、一次函数、直线(一次函数的图象)的关系;

  ⑵函数的对应值、图象上点的横纵坐标、方程的解的关系;并由此产生两种解二元一次方程的方法(图解法和函数法);

  ⑶方程组的解和两直线交点的关系。进而会用图象法解二元一次方程(组)。

  五、反思困惑

  由于本节课是”二元一次方程与一次函数”首次紧密结合,其中充分体现了数学学习中数形结合的思想,学生在理解上有一定难度。因此,如何更好的将本节课的数形结合思想灌输到学生中,特别是在讲到二元一次方程与一次函数的联系,在这方面备课的时候感到比较吃力。希望各位老师给予批评与指正。在这节课的设计中,仍有许多不足之处,请多请教!

  初中数学一次函数说课稿 7

  今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

  一, 教材分析

  新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的'学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

  二, 教学目标

  (一) 知识与技能目标

  1、 经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

  2、 经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

  3、更进一步培养学生的识图能力,即从“形”的方面解决问题。

  (二) 情感与态度目标

  1、进一步形成利用函数的观点认识现实世界的意识和能力。

  2、 通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

  3、丰富学生数学学习的成功体验。

  三, 教学重点和难点及关键

  本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

  难点是富有挑战性的数学史料。

  四, 教学理念和教学方式

  本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

  教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

  评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

  五, 教学媒体和教学技术选用

  为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

  六, 教学和活动过程

  (一) 教学准备:

  1、提前一天了解“麦莎”的有关内容。

  2、复习“一次函数图象的应用”第一节

  (二) 教学过程

  全课分为五个教学环节

  1、 情景引入 学习新知。2分钟

  2、 议一议 探索新知。 8分钟

  3、 练一练 巩固新知。 10分钟

  4、 试一试 开阔思路。 5分钟

  5、 读一读 培养兴趣。 7分钟

  6、 练一练 巩固新知。 8分钟

  7、 想一想 感悟收获。 4分钟

  8、 布置作业。 1分钟

  具体过程如下:(多媒体课件)

  初中数学一次函数说课稿 8

  一、分析教材

  1、地位与重要性

  "一次函数的性质及其图象"是第十七章的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,可以让学生加深对一次函数概念的理解并学会通过函数的图象来求解一次函数,真正理会"数形结合"这一重要数学思想,并结合实际生活的例子,培养学生各种能力和发散性思维,为日后反比例函数,二次函数及其图象的教学做好准备,起到承上启下的重要作用。

  2、教学重难点

  重点是一次函数性质及其图象。一次函数性质及其图象的教学是初二的重要内容,这是建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

  难点根据八年级学生重形象思维,弱抽象思维能力这一特点,我把一次函数性质及其图象的理解及应用作为本节课的难点

  设计意图:旨在明确教材的地位和作用,理解知识的内在联系才能创造性的使用教材。

  二、教学目标

  知识目标:理解一次函数的性质及其图象,学会性质判断函数值大小,及用数形结合的思想方法求函数值。

  能力目标:培养学生观察,分析的能力,数形结合的能力及与他人协作学习的能力,培养学生创造性思维和逻辑推理的能力,以及学数学用数学的能力。

  情感目标:体现了知识来源于实践,而运用于生活,同时渗透转化的思想,让学生体验客观事物是不断运动发展变化的,而事物之间又总是互相联系,互相制约的辨证唯物主义观点。

  设计意图:进行"多元"目标设计,重在贯彻新课标,体现学生发展的教育理念。

  三、陈述教学设想

  采用启发式和讨论式相结合等教学方法,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情。

  "授人以鱼,不如授人以渔",在教学过程中,还可以通过编故事,编题目,学生分组讨论等手段培养学生主动观察,主动思考,自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。

  设计意图:以建构主义理论为指导,要求学生学会知识,更要求学生会学知识。

  本节课还将采用多媒体课件教学,辅之与投影图片等

  设计意图:多媒体教学增强了教学的直观性,增加教学容量,提高教学效率。

  四、教学过程

  在本节复习课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发,引导为教师的责任。

  话图象,思性质:理解并巩固一次函数性质及其图象;

  让学生板演画一次函数图象y=x—2;

  让学生说出一次函数的性质;

  同桌互提问题。

  设计意图:培养学生自己动手的能力。

  小试身手:发挥学生的主观能动性,使学生学会知识,而且会学知识;

  通过以上一次函数的图象,回答下列问题:

  根据前面所画图象中,x取何值时,y>0;

  y取何值时,x>0;

  当1

  设计意图:培养学生互相交流,互相协作的能力,加深对一次函数性质的理解。

  大显身手:利用一次函数的性质来解决一些实际问题。

  1,下图表示一辆汽车从出发到停止的行使过程中速度(v)随时间(t)变化的'情况,下列判断错误的是()

  汽车从出发到停止,共行使了14分;

  汽车保持匀速行使了8分;

  出发后4分到12分之间,汽车处于停止状态;

  汽车从减速行使到停止用了2分。

  若把v改为s,你能叙述4—12小时的情况吗

  自己编一个故事,叙述这个图象所表达的意思,

  v(米/分)

  50

  041214t(分)

  2,图中表示骑自行车和摩托车者沿相同路线有甲地到乙地行使过程的函数图象,两地间的距离是80千米,请你根据图象回答解决下列问题。(请学生自己设计问题,告诉给其他组同学解决,进行比赛,适时对发言学生进行表扬,以资鼓励)

  y摩托车

  80

  自行车

  40

  0348

  设计意图:让学生体会数学来源于实践又应用于实践,通过学生自己编故事,出题目等活动激发学生的学习积极性和主动性,调动学生的求知欲,让学生在愉悦,热烈的氛围中获取知识。

  五,小结

  提问:1,通过这一节课的学习,大家有那些体会和收获

  你能用所学的一次函数的性质来解决生活中的实际问题吗

  这节课我们学习了那些数学思想方法

  (课堂由学生自由发言,畅谈感受和体会,最后由教师归纳,总结)

  设计意图:让学生自己小结,活跃了课堂气氛,做到了全班参与,理清了知识又强化了重点,更培养了学生的能力。

  六,布置作业

  必做题p473,5,9

  选做题p4710

  设计意图:作业分层次布置,体现了因材施教原则,让不同的人在数学上有不同的发展。

  总之,在整个教学过程中,学生通过动手,动脑,动口等活动,主动探索,发现问题,互动合作,解决问题,归纳概括,形成能力。增强教学应用意识,协作学习意识,养成及时归纳总结的良好习惯,使学生的主体地位得以实现。又根据学生的基础不同,特安排必做题与选做题,更体现了应材施教这一举措,使全体学生都有所获。

  初中数学一次函数说课稿 9

  一 、说教材

  1、 地位和作用

  本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。

  2、教学目标

  知识与技能目标:

  (1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

  (2)感知不等式、函数、方程的不同作用与内在联系。

  过程与方法目标:

  让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来, 通过自主交流合作解决问题,充分发挥学生的主体作用。

  情感与态度目标:

  让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

  3、 教学重点、难点

  教学重点:理解一次函数与一元一次不等式的关系;

  教学难点:利用函数图象确定一元一次不等式的解集。

  二、 说教法

  1、 学情分析

  我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

  2、教学方法

  鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

  三、说学法

  1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

  2.学生在小组学习中形成合作交流的.良好氛围,体验学习的快乐,更好地掌握知识,发展技能 。

  四、说教学程序

  (一)创设问题情境,探究新知

  兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。

  游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。

  教师提问:

  你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?

  在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?

  设计游戏的目的有以下几点:

  (1)游戏的内容便于学生列出函数关系式y=2x-4;

  (2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。

  (二)探讨归纳,讲解新知

  (1) 解不等式 2x-4>0

  (2) 观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?

  这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。

  所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y<0的部分。为了帮助学生理解,我把图像上y>0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y<0的部分也就是x轴下方的部分。最后让学生找出y>0时相应的x的值。

  通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。

  最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。

  (1) 把一元一次不等式转化为ax+b>0或ax+b<0的形式;

  (2) 画出一次函数图象;

  (3) 一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。

  (三)应用新知

  例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。

  例2:用画函数图像的方法解不等式5x+4<2x+10。

  方法1:原不等式化为3x-6﹤0, 画出直线y=3x-6。可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2

  方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x<2时,对于同一个x,直线y=5x+4在直线y=2x+10上相应点的下方。这时5x+4<2x+10,所以不等式的解集为x<2。

  总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。

  从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系, 直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。

  (四)随堂练习

  1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?

  (1)y=0; (2)y=-7;

  (3)y>0; (4)y<2.

  设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。

  2 利用函数图象解出x:

  (1)6x-4=3x-2; (2)6x-4<3x-2.

  设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。

  (五)小结与作业

  1. 归纳反思

  2. 利用一次函数图像求一元一次不等式解集的步骤

  作业布置

  必做题:习题14.3第3、4题

  选做题:已知y1=-x+3, y2=3x-4,求x取得何值时y1>y2?

  自我反思

  应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。

  初中数学一次函数说课稿 10

  一、教材分析

  (一)教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

  (二)教学目标

  新一轮的课程改革,旨在促进学生全面、持续、和谐的发展,我认为本节课的教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;

  数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;

  解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;

  情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

  (三)教学重、难点

  从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

  二、教法分析

  《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高” 的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

  三、过程分析

  本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

  这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

  为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程

  转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程

  的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

  这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

  为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的.求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

  学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0 ≤ x < 400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x>400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0 及y<0 时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

  为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

  本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

  四、设计说明

  这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展

【初中数学一次函数说课稿】相关文章:

初中数学的说课稿12-02

初中数学的说课稿范文03-20

初中数学圆说课稿03-20

初中数学说课稿06-10

初中数学面试说课稿11-20

初中数学的说课稿【精】12-08

初中数学的说课稿【热门】12-07

初中数学优秀说课稿06-25

初中数学《数轴》说课稿06-25