初中数学说课稿(精选15篇)
在教学工作者开展教学活动前,时常会需要准备好说课稿,是说课取得成功的前提。怎么样才能写出优秀的说课稿呢?以下是小编整理的初中数学说课稿,仅供参考,大家一起来看看吧。
初中数学说课稿1
一.教材分析
(说教材)
一.教材内容分析
数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。
二.学情分析(学生情况分析)
本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。
三.教学目标
根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:
A、知识技能:
1、理解数轴概念,会画数轴。
2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
B、数学思考:
1、从直观认识到理性认识,从而建立数轴概念。
2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
C、解决问题:会利用数轴解决有关问题。
D、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。
四.重点、难点(说教学重点、难点)
本节课教学重点我确定为:数轴的概念。
因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。
本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。
因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。
教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。
五.学习方法和教学方法
1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。
根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学
通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。
2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。
“凡事预则立,不预则废”,充分的课前准备是成功的一半。
六.教学准备
老师:要充分备课,精心制作多媒体课件,准备教具
学生:要认真预习,准备直尺或三角板
七、教学过程分析
课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:
(一)、复习旧知
通过对已知知识的回顾复习,使学生更易于接受新知识。
(二)、创设情景,引入课题
为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:
观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。
学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。
接下来,我创设了这样一个情境:
在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。
前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:
再次观察所画情境图、温度计
并引导学生观察、比较,将其抽象成一条直线。
这样,就把正数、0和负数用一条直线上点表示出来。
(三)、学习概念,解决问题
通过刚才的观察、比较,我引出了新课:
1)学习数轴的概念
我先进行讲解:
一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:
(1)在直线上任取一个点表示数0,这个点叫做原点。
(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。
(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。
再画数轴
师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。
设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。
3)在数轴上表示右边各数:
4)指出数轴上A,B,C,D各点分别表示什么数。
设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。
下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。
通过填空,老师引导学生做出课本第12页的归纳
设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力
课堂练习:
1)课本第12页的练习1、2题
2)强化练习:
(1)在数轴上标出到原点的距离小于3的整数。
(2)在数轴上标出-5和+5之间的所有的整数。
设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。
小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?
1)数轴的三要素:原点、正方向、单位长度。
2)画数轴的步骤:
1.画直线;
2.在直线上取一点作为原点;
3.确定正方向,并用箭头表示;
4.根据需要选取适当单位长度。
作业:课本第17页习题1.2第2题;学生用书同步训练
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
八、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
初中数学说课稿2
尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先谈谈我对教材的理解,本节课的内容是函数概念。函数内容是初中数学学习的一条主线,它贯穿整个初中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解函数概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法
通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。
利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。
首先利用多媒体展示生活实例
(1)某山的海拔高度与气温的变化关系;
(2)汽车匀速行驶,路程和时间的变化关系;
(3)沸点和气压的变化关系。
引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。
预设:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。
接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题
问题1:函数的概念是什么?初中与初中对函数概念的定义的异同点是什么?符号“ ”的含义是什么?
问题2:构成函数的三要素是什么?
问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间?
十分钟过后,组织学生进行全班交流。
预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。
函数的三要素包括:定义域、值域、对应法则。
区间:
四、说教学过程
新课标指出,数学教学过程是教师引导班级学生进行学习活动的过程,是教师和班级学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:
(一)提出问题,引入课题
俗话说:"好的开端是成功的一半"同样,好的引入能激发班级学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1求容积的高是 ,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让班级学生感知学习分式的乘法和除法的实际需要,从而激发班级学生兴趣和求知欲。
(二)类比联想,探究新知
从班级学生熟悉的分数的乘除法出发,引发班级学生的学习兴趣。(1) (2)
解后总结概括:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(班级学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导班级学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则 】
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于班级学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动:教师参与并指导,班级学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使班级学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和班级学生一起详细分析,提醒班级学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)
师生活动:教师 出示问题,班级学生独立思考解答,并让班级学生板演或投影展示班级学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让班级学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导班级学生自主进行课堂小结:
1.本节课我们学习了哪些知识?
2.在知识应用过程中需要注意什么?
3.你有什么收获呢?
师生活动:班级学生反思,提出疑问,集体交流。
设计意图:学习结果让班级学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题6.2 第1、2(必做) 练习册P (选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于班级学生对教材内容和知识体系的理解和记忆。
初中数学说课稿4
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:
两课时。本节课是第一课时,第二课时是梯形的判定及应用
(三)教学目标
1、知识与技能目标:
掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:
⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、
3、情感、态度与价值观目标:
让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四)教学重点、难点:
本节课的教学重点分成三个层次:
1、掌握梯形的定义,认识梯形的其他相关概念;
2、熟练应用等腰梯形的性质;
3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括
(六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:
1、平行四边形和梯形的区别和联系;
2、我看等腰梯形的特殊性;
3、解决梯形的常用方法。
以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形
(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、
六、有四点说明:
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。
2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。
初中数学说课稿5
开场白:
尊敬的各位考官,上午好,我是面试初中数学的6考生,今天我说课的题目是《相交线》。下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行说课。
一、说教材
《相交线》是人教版七年级下册第五章第一节的教学内容,本节课主要由生活中常见的剪刀入手,通过观察剪刀4个角的关系,抽象出两条相交直线形成的4个角的位置和大小关系,同时理解对顶角,邻补角的意义。本节是在学生学习了直线射线线段、角的基础上展开教学的,同时为后续学习相交线中特殊的垂线以及后续其他类型的角的位置关系打下了基础。起到了承上启下的作用。
在理解教材地位与作用的基础上,结合新课程标准,特制定如下三维教学目标:
1.知识与技能目标:学生通过对相交线的学习,在具体的情景中感受相交线相关角之间的关系,加深对平面图形的认识。
2.过程与方法目标:通过学生的观察与实践,体验相交线的学习过程,并且能够掌握应用相交线所产生的角之间的关系,从而来解决实际问题。
3.情感态度与价值观目标:学生体验数学的美感,从而了解数学,喜欢几何。
根据教学三维目标以及对教材的分析,我将本节课的重点确定为:学生了解两条直线相交后形成的角,探索它们之间的位置关系。而基于学生身心发展特点将本节课的难点确定为:学生掌握两条直线相交后所产生的4个角之间的关系,并且会应用此关系去解决实际问题。
二、说学情
掌握学生的基本情况,对于把握和处理教材具有重要作用,接下来我来说一下学情。七年级的学生虽抽象思维占优势,但还需感性经验的支持,这一年级的学生活泼、好动,叛逆心理比较强,教师应关注这些特点,多鼓励学生,充分发挥学生的主体作用。
三、说教法
科学合理的教学方法可以使教学活动达到事半功倍的效果,本节课我主要采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣。
四、说学法
教法为学法导航,学法是教法的缩影。因此,本节课的学习以学生的自主探究、合作交流为主要学习方式。学生通过对新知的自主探究,促使学生更深入地去学习数学,乐于探究数学。
五、说教学过程
根据新课标教材及学生特点,为真正实现学生的自主学习,学生参与知识的过程,我将从五个环节展开我的教学。
1.导入
在上课伊始,我会在大屏幕上呈现剪刀剪开布的动态视频,引导学生观察剪刀把手之间的角度和刀刃之间的角度变化关系,学生会发现二者同时变大或变小,此时我会继续提出问题:如果把把剪刀的构造看作两条直线的相交,那大家会发现什么呢?通过学生动手画图,会发现4个角,我会乘胜追击,再次发问:这4个角之间又怎样的位置关系?从而引入课题---相交线。
这样的导入,从学生熟悉的生活情境出发,从剪刀的构造抽象出两条直线相交,一方面能够激发学生的学习兴趣,同时也为接下来的探究做好了铺垫。
2.新授
活动一:初步认知
学生产生探究欲望以后,我会带领学生画出一组两条直线相交,并在黑板上标出所形成的∠1、∠2、∠3、∠4。此时提出问题:∠1和∠2有怎样的位置关系?∠1和∠3呢?学生会发现∠1和∠2有条公共边,∠1和∠3有个公共顶点,此时我会讲授:像这样∠1和∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角;∠1和∠3有一个公共顶点,∠1的两边分别是∠3两边反向延长线,具有这种位置关系的两个角,互为对顶角。同时引导学生同桌之间观察所画出的角,会发现∠1和∠2总是邻补角,∠1和∠3总是对顶角,从而总结规律:不管角如何变化,角的位置关系是不会变的。
接着继续让学生观察,在这4个角中,是否还有其他的邻补角和对顶角,数一数一个角有几个邻补角,预设学生会发现∠4和∠3互为邻补角,∠4和∠1也互为邻补角;∠4和∠2互为对顶角,在学生表述角的关系的过程中,有的学生可能不理解“互为”的意义,单独描述∠4是邻补角,从而出错,我会及时订正学生的错误。并再次抛出问题:可以单独说∠1、∠2、∠3、∠4是领补角或者对顶角吗?学生借助∠4和∠2以及∠3的位置关系,会发现∠4既是∠2的对顶角,又是∠3的邻补角。此时我也会进行总结:邻补角、对顶角是成对出现的,都是相对于两个角而言,是指的两个角的一种位置关系。在相交直线中,一个角的领补角有两个。
活动二:深入了解
学生掌握了邻补角和对顶角的概念,我会继续带领学生探究角的大小关系,让学生运用手中的量角器测量4个角的度数,看看各角有什么关系,并和同桌交流。借助平角的意义,学生不难发现∠1+∠2=180,∠2+∠3=180,我会继续启发学生发现∠1=∠3,在表扬学生的同时,我会继续讲授:按照同样的方法,也可以得出∠2=∠4。为了进一步规范学生的推导过程,我会在大屏幕出示推导的过程:因为∠1与∠2互补,∠2与∠3互补(邻补角定义),所以∠1=∠3(同角的补角相等)。
在此基础之上,我会继续大屏幕出示剪刀剪布的视频,提出问题:在剪刀把手之间的角变化的过程中,这个角的位置关系还会保持吗?为什么?并请同学们动手画一画,想一想。学生会发现,不管角度如何变化,角的位置关系总是不变的。此时,我会进一步总结:对顶角相等,邻补角互补。
活动三:实际应用
接下来是应用阶段,我会在大屏幕出示题目:两条直线相交,已知∠1=50,你能其他几个角的大小吗?这个问题组织学生前后4人为一小组,进行探讨。学生讨论的同时,我也会走下讲台,深入学生探究,对于探究过程出现的问题及时予以指导,最后师生共同总结解题方法:根据邻补角的性质,可得∠2=180-50=130;由对顶角相等可得∠3=∠1=50;∠4=∠2=150。
以上就是本节课的新授过程,通过3个活动层层递进,激发学生学习探究欲望的同时,引导学生自主合作探究学习,发现知识,让学生真正成为课堂的主人。
3.练习
为了更好的帮助学生应用新知,我会大屏幕出示题目,取两根木棍将他们交叉放到一起,并把它们想象成两条直线,说出其中的一些邻补角和对顶角?引导学生和同桌相互说一说,并再次追问,在两根木棍所形成的角中,如果∠a=35,那其他角等于多少呢?引导学生在作业本上独立完成,大屏幕出示结果,全班核对答案。
4.小结
在本环节,我会让学生大声交流讨论的方式互相说一说本节课学了那些新知,总结收获,并进一步总结,帮助学生形成知识体系。
5.作业
最后是布置作业环节,我会让学生完成课后习题1、2,并请学生查看生活中的相交线,并通过测量感受角度之间的关系。
六、说板书设计
最后我来说一下我的板书设计,现在呈现在黑板上的就是我的板书。这样的板书一目了然,突出本节课重点。
结束语:
以上是我说课的全部内容。感谢各位考官的耐心聆听,请问我可以擦掉板书吗?
初中数学说课稿6
一、说教材
(一)教材的地位和作用
本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,而这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。
(二)教学目标分析
根据新课标的要求和本节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,而我制定了如下三维教学目标:
1。认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,亦能解决一些与分式乘除有关的实际问题。
2。技能目标:经历从分数的乘除法运算到分式的乘除法运算的`过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3。情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,这使学生在学知识的同时感受探索的乐趣和成功的体验。
(三)教学重难点
本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:
教学重点:运用分式的乘除法法则进行运算。
教学难点:分子、分母为多项式的分式乘除运算。
下面,为了讲清重点难点,使学生能达到本节课的教学目标,那么我再从教法和学法上谈谈:
二、说学情
1。学生已经学习分式基本性质、分式的约分和因式分解,要通过与分数的乘除法类比,促进知识的正迁移。
2。八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,而通过类比学习加快知识的学习。
三、说教法学法
(一)说教法
教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,这从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
(二)说学法
从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,再加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学"
四、说教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:
(一)提出问题,引入课题
俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1求容积的高是,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则】
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)。
师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1。本节课我们学习了哪些知识?
2。在知识应用过程中需要注意什么?
3。你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
初中数学说课稿7
一、说教材
1、教材分析
本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。
2、学情分析
在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。
二、教学目标
1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。
2、过程与方法:通过类比有理数的运算,体会数式通性。
3、情感态度与价值观
把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。
三、教学重难点
本节重难点是合并同类项法则的探究过程。
四、教学过程
1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
②合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、探究新知
①分析例2:⑴求多项式2x-5x+x+4x-3x-2的值,其中x=。
⑵求多项式3a+abc-c-3a+c的值,其中a=﹣1/6,b=2,c=﹣3.
师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?
解法1:把x=代入2x-5x+x+4x-3x-2得
2×﹙﹚-5×+﹙﹚+4×-3×﹙﹚-2
=2×-5×++4×-3×-2
=-2.5++2--2
=﹣2-
=﹣2.5
解法2:2x-5x+x+4x-3x-2
=﹙2+1-3﹚x+﹙﹣5+4﹚x-2
=﹣x-2
当x=时,原式=﹣-2=﹣2.5
教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。
⑵3a+abc-c-3a+c
=﹙3-3﹚a+abc+﹙﹣+﹚c
=abc
当a=﹣1/6,b=2,c=﹣3时
原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=1
2、练一练:求下列各式的值
⑴3a+2b-5a-b,其中a=﹣2,b=1;
⑵3x-4x+7-3x+2x+1,其中x=﹣3
3、分析P65的例3
例3:1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
学生:小组合作探究
教师总结:1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。
两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚
2、把进货的数量记为正,售出的数量记为负
进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚
四、小结:熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。
五、作业P70﹙4、5﹚
初中数学说课稿8
我说课的内容是七年级教科书第一册第二章第二节"数轴"的第一课时 内容。我从以下几个方面对本节课的教学设计进行说明。
一:教材分析:
本节课主要是在学生学习了有理数概念的基础上, 从标有刻度的温度计 表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法, 初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数 的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具, 还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
二:教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学 目标如下:
1. 使学生理解数轴的三要素,会画数轴。
2. 能将已知的有理数在数轴上表示出来, 能说出数轴上的已知点所表示 的有理数,理解所有的有理数都可以用数轴上的点表示
3. 向学生渗透数形结合的数学思想, 让学生知道数学来源于实践, 培养 学生对数学的学习兴趣。
三:教学重难点确定:
正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重 点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。
四:学情分析:
⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概 念理解不一定很深刻, 许多学生容易造成知识遗忘, 所以应全面系统的去讲述。
⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生
不易理解, 容易造成画图中掉三落四的现象, 所以教学中教师应予以简单明白、 深入浅出的分析。 ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注 意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住 学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使 他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见 解,发挥学生学习的主动性。 ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认 识到数学课的科学性, 学好数学有利于其他学科的学习以及学科知识的渗透性。
五:教学策略:
由于七年级学生的理解能力和思维特征, 他们往往需要依赖直观具体形 象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有 趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启 发式教学法和师生互动式教学模式, 注意师生之间的情感交流, 并教给学生"多 观察、动脑想、大胆猜、勤钻研"的研讨式学习方法。教学中积极利用板书和练 习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口 的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 为充分发挥学生的主体性和教师的主导辅助作用, 教学过程中设计了七 个教学环节:
(一)、温故知新,激发情趣
(二)、得出定义,揭示内涵
(三)、手脑并用,深入理解
(四)、启发诱导,初步运用
(五)、反馈矫正,注重参与
(六)、归纳小结,强化思想
(七)、布置作业,引导预习
六:教学程序设计:
(一)、温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出 用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最 为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象 概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:
(1)零上 5°C 用 5 表示。
(2)零下 15°C 用 -15 表示。
(3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出 读数,用直线上的点表示正数、负数和 0 呢?答案是肯定的,从而引出课题: 数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会 到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了 思想上的准备。
(二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢?
(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表 示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。
(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为 正方向是习惯与方便所作,由于我们只能画出直线的一部分, 因此标上箭头指明 正方向,并表示无限延伸。)
(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度, 标数时从原点向右每隔一个单位长度取一点,依次表示
1、2、3…负数反之。 单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)
由于画数轴是本节课的教学重点, 教师板书这三个步骤, 给学生以示范。 画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴?"(通过 教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度 的直线叫做数轴。 至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念 "数轴",使学生初步体验到一个从实践到理论的认识过程。
(三)、手脑并用,深入理解:
1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、 B、 C、 D、 E、 F、 A、B、C 三个图形从数轴的三要素出发,D 和 F 是学生可能出现的错 误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的 讨论之中去接触学生,认识学生,关注学生。
2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练 习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完 后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学 生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素, 画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正 确概念的理解;一个是通过动手操作加深对概念的理解。
(四)、启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴 上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学 习埋下伏笔,这里不再展开。 安排课本 23 页的例
1, 利用黑板上的例题图形让学生来操作,教师提出要求:
1、要把点标在线上
2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点 表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真 正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去 展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加 深对数形结合思想的理解。
(五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成:
1、课本 23 页练习
2、课本 23 页 3 题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:
3、数轴上的点 P 与表示有理数 3 的点 A 距离是2,
(1)试确定点 P 表示的有理数;
(2)将 A 向右移动 2 个单位到 B 点,点 B 表示的有理数是多少?
(3) 再由 B 点向左移动 9 个单位到 C 点, C 点表示的有理数是多少? 则 先让学生通过小组讨论得出结果, 通过以上练习使学生在掌握知识的基 础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结:
1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴 吗?这节课你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示 两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点, 并能说出数轴上已 知点所表示的有理数。 (七)、布置作业,引导预习: 为面向全体学生,安排如下:
1、全体学生必做课本 25 页
2、最后布置一个思考题: 与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如 何? (来引导学生养成预习的学习习惯)
七:板书设计:(略)
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自 主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取 得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢 迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢 大家好!今天我说课的题目是 ,所选用的教材为苏科版义务教育课程 标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思 路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以 说明。(或加教学评价)
初中数学说课稿9
各位专家领导,上午好:今天我说课的课题是《勾股定理》
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
勾股定理的证明与运用
用面积法等方法证明勾股定理
对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。
(四)问题解决
⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。
⒉自学课本P101例1,然后完成P102练习。
(五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话”
①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。
②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。
目的是对学生进行爱国主义教育,激励学生奋发向上。
(六)布置作业:课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。
以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!
初中数学说课稿10
一、教材分析
本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。
二、教学目标:
根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。
2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。
3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。
三、教学重点、难点:
依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。 难点是:轴对称与轴对称图形之间的联系和区别.
四、教法、学法
为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。
五、教学过程:
根据以上分析,下面我具体谈一谈本节课的教学过程. 探究活动(一):轴对称图形
1、激趣导入、感受生活(用多媒体演示生活中的有关画面) 图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。然后,教师适时提出问题:这些图形是如何对称?怎样才能使对称的部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。使学生感受到生活中处处有数学数学就在我们身边,激发学生学习数学的兴趣。
2、活动探究形成概念:实验探究:把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试。在欣赏、感知轴对称的基础上,学生肯定急于了解这些图形到底美在哪里。因此我设置了剪纸活动,让学生通过动手实践来创造美,在操作中感知轴对称图形的概念。而后再对比上一活动中部分图案,互相交流发现它们的共同的特征“存在直线——将其折叠——互相重合”。从而合作归纳得出概念,教师板书概念。
3、联系实际举出几个轴对称图形实例,并说出对称轴(附课件)
学生根据自己的生活经验,说出符合条件的图形,让学生体会轴对称图形在生活中的广泛存在,生活中的许多轴对称图形,他们不但体现了一种对称美,还蕴涵一定的科学道理,你们知道吗?①表盘的对称保证了走时的均匀性②飞机的对称使飞机能够在空中保持平衡;③人眼睛的对称使人观看物体能够更加准确全面;④双耳的对称能使听到声音具有较强的立体感……
4、综合练习,发散思维: 这组习题的设计有图形、数学……挖掘了生活右多种图案,加强了学科间的渗透与学科间的整合,让学生在相互争论、补充、交流中寻找知识的答案,体会学习的乐趣。
探究活动(二):轴对称
1、动手操作,引入新知
将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?再观察教材119页图14.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?因为学生已经了解到轴对称图形的概念,他们可能会错误地认为两个图形成轴对称和轴对称图形都是对称,没有什么差别。所以先运用动手实践,进行剪纸,借助人的各种感官认识,突出两个图形成轴对称是指“两个图形重合”这一特点。按照“存在直线——将其折叠——两图形重合”这条主线,在老师的引导下,学生得出两个图形成轴对称、对称点的概念。教师板书概念。
2、巩固练习,应用提高(课件)对所学的知识加以理解和巩固
3、列举实例,展示才华 举出生活中成轴对称的例子,加深对轴对称的理解。
活动(三):归纳总结 观察下面两个图形,说说你的发现。 对比轴对称与轴对称图形:(列出表格,加深印象) 轴对称 轴对称 轴对称 轴对称图形 是两个 两个图形之间的关系 是一个 一个图形形本身具有的特性 对折后 两个图形完全重合 翻折后 与图形的另一半完全重合 区别:轴对称指的是“两个”图形之间的对称关系,而轴对称图形是指“一个”图形具有的对称性质。
联系:①都是用对折、翻折180°图形重合来定义的;
②两者可相互转化,如果把轴对称的两个图形看成是一体的,那么这“一个”图形就是轴对称图形,反过来,如果把一个轴对称图形互相对称的两部分看成是两个图形,那么这“两个”图形是轴对称的。这里渗透整体与部分的辨证关系,进一步发展学生抽象思维能力。
活动(四):识别图形、感受对称美
(1)、欣赏图片,体会轴对称所营造的对称美。
(2)、在计算器显示的数字0至9中,有哪些是轴对称的?许多汉字都是轴对称图形,如:田、日、曰、中、申、王等等。各公司、企业的商标中有许多轴对称实例和轴对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行;各品牌汽车的车标中有许多都是轴对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马;矩形、菱形、正方形、等边三角形等都是轴对称图形;线段也是轴对称图形,线段的垂直平分线就是它的对称轴。
强调:图形的对称轴是直线,不是线段、射线,而是线段、射线所在的直线。比如学生容易认为角平分线是角的对称轴,等腰三角形底边上的高是它的对称轴,可以很好达到纠正错误的功效。其次掌握角、等腰三角形各有一条对称轴,长方形有两条,等边三角形有三条,正方形有四条对称轴,而圆形是最特殊的轴对称图形,有无数条对称轴,所以它的对称性应用最广泛。这样可以使学生运用图形的对称性解决今后一些相关问题。
活动(五):动手操作、积极实践、创造图形
(1)、在给出轴对称图形的一半的基础上,让学生在对称轴的另一边画出另一半,成为一个完整的轴对称图形。由简到难,层层第进。
(2)、让学生发挥自己的想象力和创造力,用自己的双手创造一个美丽的轴对称图形。
(这个部分的设计,具有开放性,能充分发挥学生的想象力和创造力、动手能力、使学生成为学习的真正主人,给了学生自我表现、自我创造的空间,有利于培养学生积极的学习态度和学数学的亲切感,也有利于培养学生对美的感受能力。)
(六):课堂小结
(1)、本节课学到了哪些知识?
(轴对称和轴对称图形的定义;轴对称图形的性质;我们所学的多边形中有哪些是轴对称图形;轴对称图形的应用。)
(2)、谈谈你对本节课学习的体会与困惑。
(七):作业设计
发挥你们的想象,利用本节所学的知识,为我们班设计一个班徽,要求设计的图案是轴对称图形或成轴对称,并有一定寓意。这是一道富有开放性、趣味性和挑战性的作业题,给学生提供发挥想象力和创造力的平台,使学生的活动由课内走向生活。
以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢!
初中数学说课稿11
一.教材分析
(一)教材的地位和作用
相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。
(二)教学的目标和要求
1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。
2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。
3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。
(三)教学的重点和难点
1.重点:相似三角形和相似比的概念及判定三角形相似的预备定理。
2.难点:相似三角形的定义和判定三角形相似的预备定理。
二、教法与学法
采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。
三、教学过程的分析
看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。
1. 关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再从中位线所在的直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为 △ABC,原三角形记为△A'B'C'。因此,如果有:
∠A=∠A',∠B=∠B',∠C=∠C',
那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。
2. 关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:
如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。
3. 关于相似比概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比 (或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。
4. 在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则 △ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:
当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。
因此我们可得(预备)定理:
定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课堂练习,之后进行提问与调板,了解学生掌握知识的情况。
初中数学说课稿12
一、教材分析
▲教材的地位和作用
《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。
▲学情分析
①说已有知识经验
学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。
②说学习方法和技巧
自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。
③说个性发展和群体提高
新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。
▲教材重难点
重点:幂的乘方的推导及应用。
难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。
二、教学目标
新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:
㈠知识与技能目标
⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。
⑵掌握幂乘方法则。
⑶会运用法则进行有关计算。
㈡过程与方法目标
⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。
⑵体会具体到抽象再到具体、转化的数学思想。
㈢情感、态度与价值观
体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。
三、教法与学法
教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。
学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。
教学手段:采用多媒体辅助教学。
四、教材处理
⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。
⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。
⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。
⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。
五、教学过程
学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:
①创设情境,引入课题。
②自主探索,展示新知。
③应用新知,解决问题。
④反馈练习,拓展思维。
⑤学有所思,感悟收获。
⑥布置作业,学以致用。
1、创设情境,引入课题
《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:
问题1:同底数幂的乘法法则是怎么样的?
问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?
设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。
2、自主探索,展示新知
(1)自主探索
出示幻灯片试一试
请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n
(多媒体演示时,先出现①②,再出现③,最后出现④)
设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。
(2)合作交流,展示成果
计算:(am)n
设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。
3、应用新知,解决问题
(1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)
①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5
⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4
设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。
(3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。
(2)出示例2:计算下列各式
①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4
③(-2)2(-23)4 ④100010n(103)2
设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。
②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。
(3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)
设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。
4、反馈练习,拓展思维
(1)出示改错题(多媒体演示)
下列各题计算正确吗?
①(x2)3+x5=x5+x5=2x5
②x3x6+(x3)3=x9+x9=x18
③x2(x4)2+x5x2=x10+x10=x20
设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。
(2)设计一个探究活动(多媒体演示)
魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?
设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。
5、学有所思,感悟收获
设计三个问题:
①通过本节课学习,你学会了哪些知识?
②通过本节课学习,你最深刻的体验是什么?
③通过本节课学习,你心里还存在什么疑惑?
设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。
6、布置作业,学以致用
必做题:作业本
选做题:①已知1624326=22x-1,(102)y=1020求x+y.
②已知:比较2100与375的大小。
设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。
六、板书设计幂的乘方幂的乘方法则的
推导过程同底幂的乘法法则
幂的乘方法则范例板书
学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。
七、设计说明
1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。
2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!
初中数学说课稿13
我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。
一、教材分析
多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。
二、学情分析
1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。
2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。
三、教学目标分析
新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。
【知识与技能】
掌握多边形的内角和公式,并能熟练运用。
【数学思考】
(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
【解决问题】
通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
【情感态度】
1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。
2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。
基于以上教学目标,我确定以下教学重难点:
【教学重点】探索多边形的内角和公式。
【教学难点】探究多边形内角和时,如何把多边形转化成三角形。
因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。
四、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1.教学方法:
根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
2.学习方法:
利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
五、说教学流程
1、环节一:创设情景、引入新课
情景:请学生观察“上海世博园”的宣传视频。
从 “情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。
2、环节二:合作交流、探索新知。
活动1:
猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。
议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量” 、“剪拼”、“作辅助线” 等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。
针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。
想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。
活动2:
做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。
上节课我们学习了多边形的对角线,我们来看对角线与多边形的边数和多边形的内角和之间有什么关系?
议一议:
问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?
问题2:能否采用不同的分割方法来解决这些问题?
问题3:n边形的内角和是多少?
活动3:
想一想:采取表格的形式,首先请学生找出将多边形分割成三角形的个数,再根据三角形个数求出多边形的内角和。学生分组讨论、归纳分析并展示自己发现的规律,要求用已“探究”的不同多边形来有条理地发现和概括出多边形的边数与内角和之间的关系,水到渠成地归纳、类比推出n边形的内角和公式,让学生体会从特殊到一般的思考问题的方法根据本组探究过程填写下面表格的第二、三、四列,你能从中发现什么规律?
尝试完成第五列n边形的探究。
由于学生不熟悉完全归纳法,采取表格的形式使归纳更富条理性。为了让学生更好的理解多边形内角和公式(n-2)×180°,我又鲜明的指出:N表示什么?
但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加 180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。
练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。
抢答:
(1)过一个多边形一个顶点有10条对角线,则这是 边形.
(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是 边形.
(3)多边形的内角和随着边数的增加而 ,边数增加一条时它的内角和增加 度。
(4)十二边形的内角和等于 度。
(5)一个多边形的内角和等于720度,那么这个多边形是 边形.
3、环节三:例题讲解,知识巩固
在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。
4、环节四:分组竞赛、情感升华
(1)智慧大比拼
内容:P87的练习分成2类。
通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。
(2)拓展探究
内容:用一把剪刀,将一张正方形卡片一个角截去,剩下的卡片是一个几边形?它的内角和是多少?
小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。
(3)情系世博
内容:20xx年5月1日世博会在上海拉开帷幕,小明为了纪念这一特殊年号,他想用20xx°设计一个多边形,他的愿望能实现吗?
引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。
5、环节五:畅所欲言、分享成果
请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。
6、环节六:布置作业、课后提升
(1)习题7.3第2题、第4题。
(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。
采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。
六、评价分析
评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:
1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。
2、评价学习过程中的创新表现。
3、评价在学习过程中对身边事物、社会现实的关注程度。
评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。
七、说板书设计
最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。
板书设计:
多边形的内角和
以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教.我的说课到此结束,谢谢大家。
初中数学说课稿14
各位评委:
早上好
今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。
一、 教材分析
1、教材的地位和作用
本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算
难点确定为:负数和有理数法则的理解和运用
二、 教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识
2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力
3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。
三、 教学方法分析 方法:分层次教学,讲授、练习相结合。
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。
3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
学法指导
“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
1、教学环节设计
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:
创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。
运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦
知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
(3) 发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。
(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.
(7) 当堂检测 对比反馈
(8) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解 !
2、 作业设计
课外作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。
3、 板书设计(课件展示)
初中数学说课稿15
今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。
一、教学背景分析
1、教材分析
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析
通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.
过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点
通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学
重难点为探索和证明勾股定理.
二、教材处理
根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略
1、教法
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学模式
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学过程
(一)创设情境,引入新课
利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。
(二)引导学生,探究新知
1、初步感知定理:这一环节选择教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。
2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。
3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。
4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:A组动脑筋,想一想,是本节基础知识的理解和直接应用;B组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。C组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。
(四)归纳小结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。
【初中数学说课稿】相关文章:
初中数学圆说课稿03-20
初中数学镶嵌说课稿09-05
初中数学精品说课稿12-01
初中数学说课稿10-25
初中数学《菱形》说课稿11-24
初中数学经典说课稿11-30
初中数学精选说课稿01-10
初中数学优质说课稿11-04
初中数学《垂线》说课稿10-24
初中数学《梯形》说课稿10-22