初中数学说课稿12篇
作为一名专为他人授业解惑的人民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。写说课稿需要注意哪些格式呢?下面是小编帮大家整理的初中数学说课稿,欢迎大家分享。
初中数学说课稿1
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。
二、学情分析
初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
三、教学与学法分析
教学方法
叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。
学法指导
为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
1. 追溯历史 解密真相
让同学们欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。
2.动手操作----探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的.思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。
从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,同学们将展示"割"的方法, "补"的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
合作交流,讲述论证
教材中直接给出"赵爽弦图"的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出"同学们是学习的主体,教师是组织者、引导者与合作者"这一教学理念。同学们会发现两种证明方案。
方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让同学们体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。
我按照"理解—掌握—运用"的梯度设计了如下四组习题。
(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用
最后、温故反思 任务后延
在课堂接近尾声时,我鼓励同学们从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体同学们的理念。
五、板书设计
板书勾股定理,进而给出字母表示,培养同学们的符号意识。
六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体同学们,"以同学们的发展为本"的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。
初中数学说课稿2
各位评委、各位老师、大家上午好!
今天我说课的内容是人教版八年级下册第五章第4节《数据的波动》(第一课时)。现在我就教材、教法、学法、教学流序、板书五个方面进行说明。还恳请在座的各位专家、同仁批评、指正。
一、说教材:
1.本节课的重要内容:探究数据的分离程度及了解“极差”“方差”“尺度差”三个量度及其现实意义。重要是运用详细的生存情境,让门生感觉到当两组数据的 “均匀程度”相近时,而现实题目中详细意义却千差万别,因而必须研究数据的颠簸状态,阐发数据的差别,渐渐抽象出描画数据分离程度的“极差”“方差”“尺度差”的三个量度,并掌握使用盘算器求方差和尺度差。
2.职位地方作用:纵观本章的课本摆设体系,以数据“网络—表现—处置处罚—评判”的次序睁开。数据的颠簸是对一组数据变革的趋向举行评判,通过效果评判形成决议筹划的讲授,是数据处明白决现真相景题目必不行少的重要关键,是本章学习的终纵目标和落脚点。通过本节的学习为处置处罚种种较为庞大的现真相境的数据题目打下底子。
3.教学目标:依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。
(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。
4.重点与难点:重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。
难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
二、说教法:
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:
1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。
2.比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的'刻画一组数据的离散程度,从而引入新的量度。
3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。
4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:
(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。
四、说教学程序:
1.创设情境,导入新课:<1>、展示情景(链接奥运会中韩运动员设计的情景)。<2>、学生观察阅读分析(描述运动员射箭的平均水平)。<3>、分析思考寻求解决方案(观察表格数据求平均数)。<4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出课题——数据的波动)
2、新课: (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)
<1>、概念介绍: a、数据的离散程度(是相对于平均水平的偏离情况);b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);c、练习巩固计算极差;
<2>、展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点——方差和标准差。
<3>、引进概念:a、概念“方差”(各个数据与平均数之差的平方的平均数),给出计算公式: S2= 1/n [(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ]b、给出“标准差”的概念(方差的算术平方根)。c、学生相互交流学习操作计算器计算方差和标准差。
<4>、引导学生理解一组数据的极差、方差、标准差越小,这组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具体化)。
<5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。
3、巩固练习:
<1>、样本4、7、5、2、3、8、5、6的平均数是 ,众数是 ,极差是 ,方差是 ,标准差是 。(通过这组练习强化概念和计算方法的运用)
<2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。
5、布置作业:P—199(1)(2)(3-选作题):
五.说板书设计
板书计划为表款式,如许的板书函明显白,重点突出,加深学生对重点知识的明白和掌握,同时便于比力和影象,有利于进步讲授结果。
初中数学说课稿3
写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!
一、说教材
用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。
二、说学情
任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
三、说教学目标
【知识与技能】
掌握应用因式分解的方法,会正确求一元二次方程的解。
【过程与方法】
通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。
【情感态度与价值观】
通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。
四、说教学重难点
【重点】
运用因式分解法求解一元二次方程。
【难点】
发现与理解分解因式的方法。
五、说教法、学法
本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。
同时学生经过自主探索和合作交流的学习过程,产生积极的`情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。
六、说教学过程
(一)导入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。
(二)探索新知
问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?
学生小组讨论,探究后,展示三种做法。
问题:小颖用的什么法?——公式法
小明的解法对吗?为什么?——违背了等式的性质,x可能是零。
小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。
问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]
师引导学生得出结论:
如果a·b=0,那么a=0或b=0
(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)
“或”有下列三层含义
①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0
问题3:
(1)什么样的一元二次方程可以用因式分解法来解?
(2)用因式分解法解一元二次方程,其关键是什么?
(3)用因式分解法解一元二次方程的理论依据是什么?
(4)用因式分解法解一元二方程,必须要先化成一般形式吗?
因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。
这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”
(三)巩固提高
在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:
用分解因式法解下列方程吗?
在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。
(四)小结作业
最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。
七、说板书设计
我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:
初中数学说课稿4
说教材
“正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识.本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用.作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心.
说教法目标
根据课程标准和学生认知特点,我确定如下三维教学目标:
(1)知识与技能:
理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。
(2)过程与方法:
探索负数概念的形成过程,使学生建立正数与负数的数感。
(3)情感态度与价值观:
实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。
说教学重难度
根据本节课的教学内容,考虑到学生已有的认知结构和心理特征,我将确定如下教学重难点:
教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:了解负数的意义及0的'内涵。
说教学方法
为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。
说学法
鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。
说教学过程
在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。
(一)创设情境,引入新课
首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的.同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚.这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课.这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。
(二)合作交流,探索新知
接着,我根据学生已经产生的认知冲突及时地给出4个实际例子让学生练习,帮助他们理解具有相反意义的量,进入合作交流,探索新知的环节.我会在学生练习时进行巡视.具体的例题如下:
例1:气温有零上3℃和零下3℃;
例2:高于海平面8848米和低于海平面155米;
例3:收入50元和支出32元;
例4:汽车向东行驶4千米和向西行驶3千米.
我会让学生对以上例子中出现的每一对量进行讨论.由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词.于是我在学生回答 的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量.然后让学生自己举出一些日常生活中具有相反意义的量的实例.学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子.这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路.
帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示? 一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示.通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负.如零上3℃和零下3℃可以表示成+3℃和-3℃;收入50元和支出32元可以表示成+50元和-32元.
这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界.同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度.
(三)巩固练习,熟练技能
为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能.如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量.在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数.而其中一道练习:如果水位升高3m 时水位变化记作+3m,那么水位下降3m 时水位变化就可以记作-3m,水位不升不降时水位变化可以记作0m.这里也要特别强调0表示的意义.由此让学生加深对正、负数概念以及零的意义的理解.课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担.
(四)总结反思,发展情意
练习之后,我将引导学生通过回顾本节课所学内容,结合教学目标,归纳总结出本节课的知识要点:(1)用正数与负数表示具有相反意义的量;(2)零既不是正数也不是负数.从而起到了对本节课巩固深化的作用.这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重.
(五)布置作业
最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担.
各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识.
初中数学说课稿5
一、教材分析
本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。
二、教学目标:
根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。
2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。
3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。
三、教学重点、难点:
依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。 难点是:轴对称与轴对称图形之间的联系和区别.
四、教法、学法
为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。
五、教学过程:
根据以上分析,下面我具体谈一谈本节课的教学过程. 探究活动(一):轴对称图形
1、激趣导入、感受生活(用多媒体演示生活中的有关画面) 图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。然后,教师适时提出问题:这些图形是如何对称?怎样才能使对称的部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。使学生感受到生活中处处有数学数学就在我们身边,激发学生学习数学的兴趣。
2、活动探究形成概念:实验探究:把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试。在欣赏、感知轴对称的基础上,学生肯定急于了解这些图形到底美在哪里。因此我设置了剪纸活动,让学生通过动手实践来创造美,在操作中感知轴对称图形的概念。而后再对比上一活动中部分图案,互相交流发现它们的共同的特征“存在直线——将其折叠——互相重合”。从而合作归纳得出概念,教师板书概念。
3、联系实际举出几个轴对称图形实例,并说出对称轴(附课件)
学生根据自己的生活经验,说出符合条件的图形,让学生体会轴对称图形在生活中的广泛存在,生活中的许多轴对称图形,他们不但体现了一种对称美,还蕴涵一定的科学道理,你们知道吗?①表盘的对称保证了走时的均匀性②飞机的对称使飞机能够在空中保持平衡;③人眼睛的对称使人观看物体能够更加准确全面;④双耳的对称能使听到声音具有较强的立体感……
4、综合练习,发散思维: 这组习题的设计有图形、数学……挖掘了生活右多种图案,加强了学科间的渗透与学科间的整合,让学生在相互争论、补充、交流中寻找知识的答案,体会学习的乐趣。
探究活动(二):轴对称
1、动手操作,引入新知
将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?再观察教材119页图14.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?因为学生已经了解到轴对称图形的概念,他们可能会错误地认为两个图形成轴对称和轴对称图形都是对称,没有什么差别。所以先运用动手实践,进行剪纸,借助人的各种感官认识,突出两个图形成轴对称是指“两个图形重合”这一特点。按照“存在直线——将其折叠——两图形重合”这条主线,在老师的引导下,学生得出两个图形成轴对称、对称点的概念。教师板书概念。
2、巩固练习,应用提高(课件)对所学的知识加以理解和巩固
3、列举实例,展示才华 举出生活中成轴对称的例子,加深对轴对称的理解。
活动(三):归纳总结 观察下面两个图形,说说你的发现。 对比轴对称与轴对称图形:(列出表格,加深印象) 轴对称 轴对称 轴对称 轴对称图形 是两个 两个图形之间的关系 是一个 一个图形形本身具有的特性 对折后 两个图形完全重合 翻折后 与图形的另一半完全重合 区别:轴对称指的是“两个”图形之间的对称关系,而轴对称图形是指“一个”图形具有的对称性质。
联系:①都是用对折、翻折180°图形重合来定义的;
②两者可相互转化,如果把轴对称的`两个图形看成是一体的,那么这“一个”图形就是轴对称图形,反过来,如果把一个轴对称图形互相对称的两部分看成是两个图形,那么这“两个”图形是轴对称的。这里渗透整体与部分的辨证关系,进一步发展学生抽象思维能力。
活动(四):识别图形、感受对称美
(1)、欣赏图片,体会轴对称所营造的对称美。
(2)、在计算器显示的数字0至9中,有哪些是轴对称的?许多汉字都是轴对称图形,如:田、日、曰、中、申、王等等。各公司、企业的商标中有许多轴对称实例和轴对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行;各品牌汽车的车标中有许多都是轴对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马;矩形、菱形、正方形、等边三角形等都是轴对称图形;线段也是轴对称图形,线段的垂直平分线就是它的对称轴。
强调:图形的对称轴是直线,不是线段、射线,而是线段、射线所在的直线。比如学生容易认为角平分线是角的对称轴,等腰三角形底边上的高是它的对称轴,可以很好达到纠正错误的功效。其次掌握角、等腰三角形各有一条对称轴,长方形有两条,等边三角形有三条,正方形有四条对称轴,而圆形是最特殊的轴对称图形,有无数条对称轴,所以它的对称性应用最广泛。这样可以使学生运用图形的对称性解决今后一些相关问题。
活动(五):动手操作、积极实践、创造图形
(1)、在给出轴对称图形的一半的基础上,让学生在对称轴的另一边画出另一半,成为一个完整的轴对称图形。由简到难,层层第进。
(2)、让学生发挥自己的想象力和创造力,用自己的双手创造一个美丽的轴对称图形。
(这个部分的设计,具有开放性,能充分发挥学生的想象力和创造力、动手能力、使学生成为学习的真正主人,给了学生自我表现、自我创造的空间,有利于培养学生积极的学习态度和学数学的亲切感,也有利于培养学生对美的感受能力。)
(六):课堂小结
(1)、本节课学到了哪些知识?
(轴对称和轴对称图形的定义;轴对称图形的性质;我们所学的多边形中有哪些是轴对称图形;轴对称图形的应用。)
(2)、谈谈你对本节课学习的体会与困惑。
(七):作业设计
发挥你们的想象,利用本节所学的知识,为我们班设计一个班徽,要求设计的图案是轴对称图形或成轴对称,并有一定寓意。这是一道富有开放性、趣味性和挑战性的作业题,给学生提供发挥想象力和创造力的平台,使学生的活动由课内走向生活。
以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢!
初中数学说课稿6
一、教材分析(说教材):
1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
2、教学目标:
1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程环节一:
创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:
1、矩形的定义:有一个角是直角的平行四边形叫矩形
2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。
3、平行四边形的性质:
平行四边形的性质
平行四边形判定
平行四边形两组对边分别相等
平行四边形两组对边分别平行
两组对边分别平行(或相等)的四边形是平行四边形
平行四边形一组对边平行且相等
平行四边形对角线互相平分
一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
平行四边形两组对角分别相等
两组对角分别相等的四边形是平行四边形
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的.平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
如图,△ABC中,点O是AC边上的一个动点,
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。
以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!
初中数学说课稿7
一、教学目标
1. 知识与技能目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 过程与方法目标:激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 情感态度与价值观目标:渗透转化的数学思想和极限思想。
二、教学重点
正确计算圆的面积
三、教学难点
圆面积公式的推导
四、教具准备
多媒体课件,圆片
五、教学设计
(一)复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
4. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
(二)动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。教师评价。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r
S=πr2
师小结公式 S=πr2,让学生小组内说说圆的.面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(三)运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(CAI课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示: 用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
(四)全课小结
这节课你自己运用了什么方法,学到了哪些知识?师生共同回顾。
(五)布置作业
1. 第97页的第3题和第4题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物 直径(厘米) 半径(厘米) 面积(平方厘米)
六、板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
初中数学说课稿8
一、说课本:
1、课本内容:我以为可以明白为探索规则——明白规则——应用规则,进一步表现了新课标中“情境引入——数学建模——表明、拓展与应用的模式”。分式的乘除法与分数的乘除法雷同,以是可通过类比,探索分式的乘除运算规则的历程,会举行简朴的分式的乘除法运算,分式运算的效果要化成最简分式和整式,也便是分式的约分,要修业生能办理一些与分式有关的简朴的现实题目。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:(1)、理解分式的乘除运算法则(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。(2)能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。(2)、培养学生的创新意识和应用意识。(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法:
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法:
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜:;(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述:×=;÷=×=.
活动目的`:两种形式巩固对法则的理解。
教学效果:理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1计算(1);(2)
活动目的:抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:(1)3xy2÷;(2)÷
活动目的:让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)76页第一题,共3个小题。
教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计:
主板书采用纲要式,一目了然。
(一)、分式的基本性质1、文字叙述2、符号表述
(二)、应用
末了,谈谈我的领会。讲堂上同等对话,让门生自主掌握数学,发明题目,实时纠正。讲授是让门生富厚了解。
初中数学说课稿9
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:
一、教材分析
(一)地位、作用
该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。
(二)、教学目标
根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
五、教学过程
(一)创设情景,引入新课
多媒体显示立交桥、防盗网。
设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生们用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的'教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:
(1)我演示教具(自己制作),也给学生们操做。
(2)让学生们通过量角器测量。
(3)让学生们把画好的对顶角剪下来,进行翻折。
(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。
学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。
(三)让学生们举出生活中对顶角相等的例子
学生们可以通过合作性交流、思考、发表见解。
让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。
(四)例题解析
例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。
四、说教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师与学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:
(一)提出问题,引入课题
俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣与求知欲。因此我用实际出发提出现实生活中的问题:
问题1求容积的高是 ,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法与除法的实际需要,从而激发学生兴趣与求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(学生应该能说出依据的是:分数的乘法与除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则 】
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,与学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)
师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式与结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1.本节课我们学习了哪些知识?
2.在知识应用过程中需要注意什么?
3.你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题6.2 第1、2(必做) 练习册P (选做),我设计了必做题与选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容与知识体系的理解与记忆。
初中数学说课稿12
一、 说教材作用:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。
二、说教学目标
1.让学生理解分式方程的意义。
2.掌握可化为一元一次方程的分式方程的一般解法。
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的'解法,使学生熟练掌握解分式方程的技巧。
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。
三、说重难点
本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于七年级学生理解有一定的困难,亦可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。
四、说教学方法:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。而再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重"精讲多练",真正体现以学生为主体。上知识点复习课时采用了启发、引导式的同时,而针对学生的回答所出现的一些问题给出及时的纠正,在做练习时,这除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、说教学过程
(一)复习
(1) 复习什么叫分式方程?
设计意图:主要让学生区分整式方程与分式方程的区别,能够使学生能积极投入到下面环节的学习。
(2)解分式方程
①学生回忆解分式方程的基本思路和解分式方程的一般步骤,讲解例题:
解:原方程可化为:
方程两边同乘 ,约去分母,得
(x+3)-8x=x2-9-x(x+3)
解这个整式方程,得
检验:把x=3代入最简公分母 (x+3)(x-3)=0
∴x=3是原方程的增根
∴原方程无解
设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。
②学习例题交流讨论,找两组同学到黑板上尝试解题。
设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法进一步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。
③我还设计了几个小题让同学们思考分式方程解的情况
设计意图:让学生理解在知道分式方程的根的情况下求式中字母的值
教师小结:
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根
(二)大显身手
设计意图:巩固
六、课内小结
1、这节课我们学习了什么?
2、提一个问题
【初中数学说课稿】相关文章:
初中数学的说课稿12-02
初中数学面试说课稿11-20
经典初中数学说课稿11-09
初中数学的说课稿【精】12-08
初中数学优秀说课稿05-20
初中数学《菱形》说课稿04-05
初中数学《数轴》说课稿11-23
初中数学说课稿03-11
数学说课稿初中06-07
初中数学的说课稿【热门】12-07