经典初中数学说课稿

时间:2022-11-09 11:31:01 初中说课稿 我要投稿

经典初中数学说课稿

  在教学工作者实际的教学活动中,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。说课稿应该怎么写呢?以下是小编精心整理的经典初中数学说课稿,仅供参考,欢迎大家阅读。

经典初中数学说课稿

经典初中数学说课稿1

  《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:

  一、根据学生的年龄特征和认知特点组织教学。

  二、重视培养学生的应用意识和实践能力。

  1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。

  2、培养学生应用数学的意识和提高解决问题的能力。

  三、重视引导学生自主探索,培养学生的创新精神。

  1、引导学生动手实践、自主探索和合作交流。

  2、鼓励学生解决问题策略的多样化。

  四、教师对教学目标,难点,重点把握要恰当、具体。

  数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。

经典初中数学说课稿2

  一、教材分析:

  1、教材所处的地位:

  二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础

  2、教学目的要求:

  (1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;

  (2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

  (3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

  (4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

  3、教学重点和难点

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

  重点:

  (1)二次函数的概念

  (2)能够表示简单变量之间的二次函数关系.

  难点:

  具体的分析、确定实际问题中函数关系式

  二.教法、学法分析:

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  1、教法研究

  教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

  2、学法研究

  初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

  3、教学方式

  (1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

  (2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

  (3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

  三.教学流程分析:

  这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

  1、温故知新—揭示课题

  由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

  2、自我尝试、合作探究—探求新知

  通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

  3、小试身手—循序渐进

  本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

  4、课堂回眸—归纳提高

  本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

  5、课堂检测—测评反馈

  共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

  6、作业布置

  作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

  四、对本节课的一点看法

  通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

经典初中数学说课稿3

  各位评委:

  大家好!今天我说课的题目是 ____,所选用的教材为浙教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级第____章第____节的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:______________难点确定为:____________________

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:初步掌握____,能够运用所学的知识解决一些简单的问题。

  2. 过程与方法目标:经历探索____的过程,培养学生观察分析、类比归纳的探究能力,加深对函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论等数学思想的认识。

  3.情感态度与价值目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、教学方法分析

  本节课我将采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就旧,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

经典初中数学说课稿4

各位评委:

  大家上午好!

  今天我说课的内容是《勾股定理》。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标、教学重难点、教法学法、教学过程等五个方面加以说明。

  一、教材分析

  本节内容是苏科版数学八年级上册第二章第1节《勾股定理》第1课时。它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。由此可见,《勾股定理》是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

  二、教学目标

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

  1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理

  2、经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

  3、通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

  三、教学重点、难点:

  依据教学目标,我认为本节课的重点是:勾股定理的探讨。

  教学难点:利用数形结合的方法验证勾股定理。

  四、教法和学法

  本节课我将采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

  五、教学过程:

  根据以上分析,下面我具体谈一谈本节课的教学过程.

  (一)创设情境以趣引新

  一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的学习积极性)

  (二)实践探索猜想归纳

  1、(课件出示课本P44图2—1),请同学们观察并回答问题:

  根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积。学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。

  (这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。)

  2、提出问题:是否所有的直角三角形都有这个性质呢

  先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证。仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想。教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。

  (这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到

经典初中数学说课稿5

  一。教材分析

  1.教材的地位和作用

  这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从同学们活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以同学们为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

经典初中数学说课稿6

  一、说教材

  1、教材分析

  本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。

  2、学情分析

  在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。

  二、教学目标

  1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。

  2、过程与方法:通过类比有理数的运算,体会数式通性。

  3、情感态度与价值观

  把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。

  三、教学重难点

  本节重难点是合并同类项法则的探究过程。

  四、教学过程

  1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  ②合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

  2、探究新知

  ①分析例2:⑴求多项式2x-5x+x+4x-3x-2的值,其中x=。

  ⑵求多项式3a+abc-c-3a+c的值,其中a=﹣1/6,b=2,c=﹣3.

  师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?

  解法1:把x=代入2x-5x+x+4x-3x-2得

  2×﹙﹚-5×+﹙﹚+4×-3×﹙﹚-2

  =2×-5×++4×-3×-2

  =-2.5++2--2

  =﹣2-

  =﹣2.5

  解法2:2x-5x+x+4x-3x-2

  =﹙2+1-3﹚x+﹙﹣5+4﹚x-2

  =﹣x-2

  当x=时,原式=﹣-2=﹣2.5

  教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。

  ⑵3a+abc-c-3a+c

  =﹙3-3﹚a+abc+﹙﹣+﹚c

  =abc

  当a=﹣1/6,b=2,c=﹣3时

  原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=1

  2、练一练:求下列各式的值

  ⑴3a+2b-5a-b,其中a=﹣2,b=1;

  ⑵3x-4x+7-3x+2x+1,其中x=﹣3

  3、分析P65的例3

  例3:1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?

  2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?

  学生:小组合作探究

  教师总结:1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。

  两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚

  2、把进货的数量记为正,售出的数量记为负

  进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚

  四、小结:熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。

  五、作业P70﹙4、5﹚

经典初中数学说课稿7

  一、设计思想:

  数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

  处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。

  根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。

  充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。

  数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

  网络环境下代数课的教学模式:设置情境—提出问题—自主探究—合作交流—反思评价—巩固练习和总结提高

  二、背景分析:

  (一)学情分析:

  内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

  学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

  本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

  (二)内容分析:

  本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

  通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意

  识,渗透类比转化思想。

  (三)教学方式:自学导读—同伴互助—精讲精练

  (四)教学媒体:Midea———Class纯软多媒体教学网几何画板

  三、教学目标:

  知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生

  增根的原因,掌握解分式方程验根的方法。

  过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式

  方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的

  能力,培养应用意识,渗透转化思想。

  情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用

  知识解决问题的成功体验,树立学好数学的自信心。

  教学重点:解分式方程的基本思路和解法。

  教学难点:理解分式方程可能产生增根的原因。

  设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

  四、板书设计:

  a不是分式方程的解

  (二)学习方法:类比与转化

  教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

  五、教学过程:

  活动1:创设情境,列出方程

  设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美—激励启迪。

  设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

  活动2:总结定义,探究解法

  使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

  教学思考:再一次体现了对全章进行整体设计的好处,在学习16、1分式和16、2分式的运算时,几乎每一节课都运用类比的思想—分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:

  一、拓展内容要与所学内容有有机联系。

  二、拓展内容要符合学生实际认知水平,不要任意拔高。

  三、拓展内容要适量,不要信息过载。

  活动3:讲练结合,分析增根

  活动4:布置作业,深化巩固(略)

经典初中数学说课稿8

  今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:

  1、向量的直角坐标运算

  2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。

  下面我从三个方面阐述这节课。

  第一方面:教材分析

  本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。

  (一)教材的地位和作用

  向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。

  同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。

  (二)教材的处理

  结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。

  根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。

  由此,我对教材的引入、例题和练习做了适当的补充和修改。

  (三)教学重点和难点

  根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。

  由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。

  要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。

  (四)教学目标的分析

  根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。

  1、知识教学目标

  能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。

  2、能力训练目标

  培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。

  3、德育渗透目标

  通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。

  第二方面:教法与学法分析

  现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。

  在教学中借助于计算机课件辅助教学。

  第三方面:教学过程

  共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。

  (一)复习提问

  (1)向量在直角坐标系中坐标的定义是什么?

  (2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?

  (3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?

  课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。

  (二)导入新课

  在教学过程中,我提出两个问题:

  问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)

  1、则a,b的坐标为……。

  2、求a+b,a—b,λa。

  3、求a+b,a—b,λa的坐标。

  问题2已知A=(x1,y1),B=(x2,y2)。

  1、则,的坐标分别为……。

  2、化简。

  3、求的坐标。

  这两个问题由师生共同练习完成。

  通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。

  (三)创设问题

  这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。

  第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。

  由问题1我们得到结论1:

  a+b=(a1+b1,a2+b2),

  a—b=(a1—b1,a2—b2),

  λa=(λa1,λa2)。

  用语言叙述为:

  两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。

  数乘向量的坐标等于数乘向量相应坐标的积。

  由问题2我们得到结论2:

  =(x2—x1,y2—y1)。

  用语言叙述为:

  一个向量的坐标等于向量终点的坐标减去始点的相应坐标。

  这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。

  练习1(口答)下列说法是否正确:

  (1)已知向量a=(—2,4),b=(5,2),

  则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。

  (2)已知A(2,1),B(3,8),则=(—1,—7)。

  ①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。

  ②提醒学生区分点的坐标和向量坐标,两者是不同的概念。

  上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。

  第二层次:设计练习2、3、4。

  练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。

  (1)a=(—2,4),b=(5,2);

  (2)a=(4,3),b=(—3,8)。

  练习3 已知A(2,1),B(3,8),求。

  练习4 已知(2,3),B(4,5),c(6,8)。

  (1)若3=,求D点的坐标。

  (2)求2—3+2。

  这组练习由学生独立完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。

  第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。

  例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。

  例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。

  讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。

  通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。

  练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。

  练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。

  通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。

  (四)小结

  为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:

  向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。

  (五)布置作业

  为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:

  1、课本第186页:练习A1(1)、2(1);练习B 1、2。

  2、思考题:3a与a的坐标有什么关系?位置有什么特点?

  A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。

  (六)板书设计

  在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:

  课题:6、2、2 向量的直角坐标运算

  问题1练习1 例1 练习5

  结论1练习2

  问题2练习3

  结论2练习4

  本节的说课内容到此结束,谢谢大家。

经典初中数学说课稿9

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、 解方程在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。

  2、一元一次方程这一章可以归纳为两个方面:第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  3、接下来,介绍本节课的教学目标、重点和难点。

  教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:(1)熟悉利用等式性质解一元一次方程的基本过程;(2)通过具体的例子,归纳移项法则;(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。2、能力目标是:(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。;3、情感目标是:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。(2)培养学生严谨的思维品质。由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。

  二、教材处理

  本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。然后交流各自所发现的规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、 引入:①通过游戏引入:同学们,你们是不是经常完游戏?今天我们来玩一个数学游戏,我手中有6、X、30三张卡片,请同学们用他们编一元一次方程,比一比看谁编的又快又对。学生思考,根据自己对一元一次方程的理解程度自由编题。②设疑:现在老师遇到一道难题,请同学们帮助解决一下,请看大屏幕:解方程5X-2=8解:5X=8+2 X=2 看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  2、探索规律,总结移项法则:出示引例并鼓励学生通过观察归纳,独立发现移项法则。对有困难的同学,教师通过适当的语言提示,引导学生发现规律。这样学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出移项法则。

  3、例题:对于例1,首先鼓励学生试着解方程,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后规范书写格式。例2,教师首先放手让学生去做。只要学生的解法合理就鼓励。

  4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  5、 归纳总结:教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

经典初中数学说课稿10

  写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的'方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的方法。

  五、说教法、学法

  本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

  同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

  六、说教学过程

  (一)导入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

  (二)探索新知

  问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

  学生小组讨论,探究后,展示三种做法。

  问题:小颖用的什么法?——公式法

  小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

  小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

  问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

  师引导学生得出结论:

  如果a·b=0,那么a=0或b=0

  (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

  “或”有下列三层含义

  ①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

  问题3:

  (1)什么样的一元二次方程可以用因式分解法来解?

  (2)用因式分解法解一元二次方程,其关键是什么?

  (3)用因式分解法解一元二次方程的理论依据是什么?

  (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

  因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

  这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

  (三)巩固提高

  在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

  用分解因式法解下列方程吗?

初中数学说课稿万能

  在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

  (四)小结作业

  最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

  七、说板书设计

  我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

经典初中数学说课稿11

尊敬的各位评委、老师

  上午好:我是(19)说课者,今天我说课的内容是平行四边形的判定。所选用的教材是经全国中小学教材审定委员会,20xx年初审通过的,人教版义务教育课程,标准实验教科书。对于本节课。我将根据去年国家教育部颁布的,新数学课堂标准的理念,以教什么,怎样教,为什么这样教为思路,从说教材、说教法,说学法,说教学过程及教学反思等五个方面向大家介绍一下,我对本节课的理解与设计。

  一、说教材

  1、地位和作用

  本节教材是人教版,初中数学八年级下册第19章第1节的内容,是初中数学的重要内容之一。平行四边形是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了平行四边形的性质的基础上,对平行四边形的判定进一步拓展;另一方面又为其他四边形的教学打下基础,做好铺垫,在教学中起着承前启后的作用。

  2、教学重点和难点

  本节课的重点是:平行四边形的判定定理及应用

  难点是:平行四边形的判定的推导过程(这点要求比较难)

  我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。

  根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下:

  3、教学目标

  1)掌握

  2)探索,由此发现充满着探索性和挑战性。(方法与过程)

  3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观)这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。

  总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法》

  二、说教法

  情境教学法、课堂研讨法

  让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。可以从以下三方面得到体验:

  1)培养学生的自学能力

  2)落实学生的主体地位,促进学生的主动发展

  3)为培养学生的创新意识与创新能力奠定基础

  从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方”

  三、说学法

  老师传授给学生的不应只是知识内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。

  在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程》

  四、说教学过程

  1阶段:创设情境、引入新课

  我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。

  2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。)

  3阶段:课堂实践

  我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)

  最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)

  4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)

  5阶段:布置作业(达到复习巩固新知识的目的)

  五、教学反思

  本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!

经典初中数学说课稿12

尊敬的各位老师们:

  你们好!

  今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

  一.背景分析

  1. 教材的地位及作用

  “数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

  2. 教学重点、难点的分析

  教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

  教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

  3. 教材的处理

  1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

  2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

  3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

  4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

  二、教学目标设计

  1. 知识技能

  1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

  2.数学思考

  1)通过观察与思考,建立数轴的概念。

  2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

  3.解决问题

  会利用数轴解决有关问题。

  4.情感态度

  通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三.课堂结构和教学媒体设计

  1.教学方法

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境—问题 —观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

  有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

  2.学法指导

  现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。

  要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

  学生的工具:直尺或三角板

  四.教学过程设计

  活动1创设情境引入新课

  1)观察温度计,并填空:

  ℃ ℃ ℃

  师生行为:老师演示课件,学生观察并举手发言。

  设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

  2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

  设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

  3)再次观察课本图1.2-1、温度计,找出它们之间的共同之处

  师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

  设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

  活动2学习数轴的概念

  一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。

  数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。

  师生行为:老师讲解数轴的概念,说明画数轴说要满足的条件,并提醒学生数轴的三要素;学生观察、理解。

  设计意图:初步认识数轴的概念及其所需要的条件。

  活动3数轴概念的应用

  1)讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么?

  ① 师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴

  的三要素。

  设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。

  2)画数轴

  画数轴的步骤:1.画直线;2.在直线上取一点作为原点;3.确定正方向,并用箭头表示4.根据需要选取适当单位长度。

  师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

  设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

  3)在数轴上表示右边各数:0.5 +2 -0.3

  4)指出数轴上A,B,C,D各点分别表示什么数。

  解:点A表示-2;点B表示2;点C表示0;点D表示-1。

  师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。

  设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

  活动4数轴概念的深化

  填空:数轴上表示-2的点在原点的 边,距原点的距离是 , 表示3的点在原点的 边,距原点的距离是 。

  归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点的 右 边,与原点的距离是 a 个单位长度;表示数-a的点在原点的 左 边,与原点的距离是 a 个单位长度。

  师生行为:通过填空,老师引导学生做出课本第12页的归纳。

  设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

  活动5巩固数轴的概念

  课堂练习:

  1)课本第12页的练习1、2题

  2)强化练习(1)在数轴上标出到原点的距离小于3的整数。(2)在数轴上标出-5和+5之间的所有的整数。

  师生行为:学生练习,老师巡堂、指导。

  设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

  作业:课本第17页习题1.2第2题;学生用书同步训练。

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  五、教学评价设计

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  总之,在这节课上,我始终以学生为主体创设情景,激发学生的学习兴趣;、让学生主体参与,探索新知识,充分体现了以学生为主体的新理念;联系实际,数学源于生活,服务于生活,让学生轻松快乐的学习数学,才是新课程改革的最终价值取向。我相信,有了快乐,数学课堂将焕发出生命的光彩。

  谢谢大家!

经典初中数学说课稿13

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。

  教法分析:结合七年级学生和本节教材的特点,在教学中采用"问题情境----建立模型----解释应用---拓展巩固"的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、 教学过程设计

  1.创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个"数学化"的过程,从而引出下面的环节。

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  三。回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  四、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基。通过学生自己创设情境 ,锻炼了发散思维。

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  五、感悟收获

  布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料。

  板书设计 探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

经典初中数学说课稿14

尊敬的各位考官:

  大家好,我是X号考生,今天我说课的题目是《单项式》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先来谈一谈我对教材的理解。

  本节课选自人教版初中数学七年级上册第二章第一节《整式》,属于数与代数的领域。它是在学生已经掌握用字母表示数和列式表示数量关系的基础上进行教学的,是由数到式转变的起始课,为以后学习合并同类项、函数以及方程等内容打下基础。

  二、说学情

  接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力,也能做出简单的归纳概括,但是本节课还需要学生对概念进行辨析,这对学生而言有一定的难度,并且本学段的学生受挫折能力不强。考虑到学生的特点与能力,教学中我会注意给予适当的鼓励与引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握单项式的定义及相关概念,能准确判断一个单项式的系数和次数。

  (二)过程与方法

  经历观察、归纳单项式特点的过程,提高总结归纳能力,增强符号意识。

  (三)情感、态度与价值观

  感受生活中的数学,体会数学的魅力,激发学习数学的兴趣。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是:单项式的定义及相关概念;教学难点是:单独的一个数或字母也是单项式,单项式的次数,同一个单项式可以表示不同的含义。

  五、说教法学法

  为了突破重点,解决难点,顺利达成教学目标,本节课我将采用讲授法、小组讨论法、自主探究法等教学方法。在教学中积极培养学生的学习兴趣和动机,明确学习目的。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  这样不仅可以巩固新知,而且通过练习题来补充讲解知识点,以更具体形象的方式加深理解,学生能够更好地掌握新知。

  (四)小结作业

  七、说板书设计

  我的板书设计遵循简洁明了、重点突出的原则,以下是我的板书设计:

经典初中数学说课稿15

  今天我说课的题目是 ,这节课所选用的教材为北师大版义务教育课程标准八年级 教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等。

  知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但是对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1、知识与技能目标:

  2、过程与方法目标:

  3、情感态度与价值目标:

  三、 教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程当中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为了有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过了前面的学习,学生已经基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而且应该是优化认知结构,完善知识体系的一种有效手段,为了充分发挥学生的主体地位,让学生畅谈本节课的收获。

  (7)当堂检测 对比反馈

  (8) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢。

【经典初中数学说课稿】相关文章:

初中数学的说课稿11-08

初中数学经典说课稿11-30

初中数学精选说课稿01-10

初中数学镶嵌说课稿09-05

初中数学《梯形》说课稿10-22

初中数学《垂线》说课稿10-24

初中数学优质说课稿11-04

初中数学说课稿06-10

初中数学的说课稿范文03-20

初中数学圆说课稿03-20