初中数学优秀说课稿

时间:2022-11-15 18:57:25 初中说课稿 我要投稿

初中数学优秀说课稿集合12篇

  在教学工作者实际的教学活动中,就难以避免地要准备说课稿,编写说课稿是提高业务素质的有效途径。那么大家知道正规的说课稿是怎么写的吗?以下是小编为大家收集的初中数学优秀说课稿,欢迎阅读与收藏。

初中数学优秀说课稿集合12篇

初中数学优秀说课稿1

  一、教材分析:

  反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、教学目标分析

  根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

  三、教学重点难点分析

  本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

  难点则是如何抓住特征准确画出反比例函数的图象。

  为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、教学方法

  鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

  和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨

初中数学优秀说课稿2

  各位评委:早上好

  今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算

  难点确定为:负数和有理数法则的理解和运用

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

  2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

  3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

  三、 教学方法分析 方法:分层次教学,讲授、练习相结合。

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

  3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  学法指导

  “授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

初中数学优秀说课稿3

  一、说教材

  1、教材简析

  平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

  2、教学目标:

  (1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

  (2)通过操作,让学生尝试用转化的思想方法解决新的问题。

  (3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

  3、教学重点:平行四边形的面积计算。

  4、教学难点:理解平行四边形面积计算公式的推导过程。

  二、教法学法

  平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

  教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

  三、教学过程

  (一)复习铺垫

  教具逐个出示:

  1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

  2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

  学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

  3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

  学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

  (二)导入新课

  图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

  你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

  (三)引导探究

  1、学生独立思考,动手操作,尝试计算平行四边形的面积。

  (教师巡视,学生计算1号学具纸片平行四边形的面积)

  谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

  到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

  反馈交流:根据学生的回答教具演示“转化过程”。 演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

  追问:为什么可以这样算?

  把平行四边形割补成长方形,图形的什么变了,什么没有变?

  比较拼成的长方形的长、宽与原平行四边形的底、高之间的关系。

  2、操作实践,验证想法。

  是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

  3、观察分析,归纳公式。

  那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

  结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

  板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  如果用字母S表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

  (四)小结

  1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

  2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

  (五)练习

  1、计算下面平行四边形的面积。(练后讲评)

  2、计算下面平行四边形的面积。

  3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

  4、口答下面每个平行四边形的面积。

  底(厘米)

  50

  12

  100

  9

  高(厘米)

  40

  8

  36

  4

  面积(平方厘米)

  (六)课堂小结

  1、这节课,我们学到了什么?有什么体会?

  2、同学们的表现好在哪里?

  *3机动练习:

  计算下面图中平行四边形的面积,正确列式为( )。(单位:厘米)

初中数学优秀说课稿4

  一、 教材分析

  教材的地位和作用:

  矩形是在学生已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

  二、教学目标

  根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合学生实际情况,我把本节课的教学目标确定为:

  知识技能:

  1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

  2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

  数学思考:

  1.经历矩形的概念和性质的探索过程,发展学生合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展学生的思维能力和语言表达能力。

  2.根据矩形的性质进行简单的计算和应用,培养学生逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

  解决问题:

  通过学生观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

  情感态度:在与他人的交流合作中,让学生感受数学活动充满探索的乐趣,提高学生的学习热情和学习的积极性,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展学生的主动探索和独立思考的习惯。

  三、教学重点:矩形的性质及其应用。

  教学难点:理解矩形的特殊性,探究矩形特殊性质。

  四、教法及手段:

  根据本课内容和学生的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和学生的主体地位得到充分体现。

  教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

  五、教学过程

  本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

  在本课各个环节设计中力求突出以下几个方面:

  1、数学问题生活化

  设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2 ; 性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的学生还不知道电视的大小是指的对角线的长短,通过这道题目,让学生了解到生活的常识,也让学生进一步体会数学在生活中的作用,而且通过问题的解决培养学生爱数学、学数学的热情。

  2、创设自主探究情境,发挥学生的主动性

  矩形定义的探究,学生拿出自制平行四边形学具,分组活动,通过学生观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过学生找出生活中的实例,让学生感受数学美及数学与生活的联系。矩形性质的探究是让学生类比平行四边形的性质,通过观察、测量、分析、证明等手段,()让矩形的性质在活动中"浮出水面".活动中让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生。我在评价中对活动积极的小组和个人进行表扬,增强学生创造的信心,体验到成功的快乐。性质1是学生小组交流完成的证明。而性质2要求学生认真写出已知、求证和证明过程,在此基础上请一个学生上黑板板书,其余学生观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养学生发散思维能力,养成良好的解题习惯。 活动中让学生充分经历知识形成的全过程。同时也积累了良好的学习经验。

  3、训练学生的逻辑思维,培养学生严谨的解题习惯。

  本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导学生进一步发现与矩形中所包含的基本图形,从而让学生感受矩形与等腰三角形与直角三角形有密切的关系,让学生体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养学生发散思维能力。例题的设计是让学生体会性质应用的同时规范学生的解题步骤和格式,让学生感受数学思维的严谨性。练习2是生活中的问题,让学生体会生活中的数学,做到学用结合,培养学生学习数学的的热情和情趣。

  4、教学活动中注重体现人人学有价值的数学

  首先根据不同学生的智力、能力、基础不一,把学生编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的学生共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。 其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的学生选用。另外数学日记是帮助学生总结本节课的收获和不足,培养学生善于总结和反思的习惯。

  5、充分利用多媒体辅助教学

  本节课是采用多媒体进行辅助教学的,给学生以直观感性的认识,培养学生观察、表述、归纳的能力。 使教学目标得以顺利完成。

  以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学优秀说课稿5

各位评委:

  大家好!我是(x)号说课者,今天我说课的题目是(x),所选用的教材为北师大版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

  一、教材的地位和作用

  本节教材是初中数学(x)年级第(x)章第(x)节的内容,是初中数学的重要内容之一。一方面,这是在学习了的基础上,对的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  二、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了,对已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  三、教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

  1、(了解、理解、熟记、初步掌握、会运用等);

  2、通过的学习,培养学生观察分析、类比归纳的探究能力,加深对函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论等数学思想的认识。

  3、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  根据以上对教材的地位和作用,以及学情和教学目标的'分析,结合新课标对本节课的要求,我将本节课的重点确定为:难点确定为:

  为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

  四、教法和学法分析

  1、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,

初中数学优秀说课稿6

  下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

  一、说教材

  1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

  2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

  3、 教学目标

  知识目标:(1)、理解分式的乘除运算法则

  (2)、会进行简单的分式的乘除法运算

  能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

  (2)、能解决一些与分式有关的简单的实际问题。

  情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

  (2)、培养学生的创新意识和应用意识。

  (3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

  4、教学重点:分式乘除法的法则及应用.

  5、教学难点:分子、分母是多项式的分式的乘除法的运算。

  二、说教法

  教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

  1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

  2、合作式教学,在师生平等的交流中评价学习。

  三、说学法

  学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

  1、类比学习的方法。通过与分数的乘除法运算类比。

  2、合作学习。

  四、说教学程序

  1、类比学习,探索法则。(约3分钟)

  让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

  复习:分数的乘除法法则(抽一学生口答)

  猜一猜:

  (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

  类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

  活动目的:

  让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

  教学效果:

  通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

  2、理解法则:(约2分钟)

  文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

  两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

  活动目的:

  两种形式巩固对法则的理解。

  教学效果:

  理解法则,进一步发展学生的符号感。

  3、应用:(约20分钟)

  (1)牛刀小试

  教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

  活动目的:

  抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

  教学效果:

  有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

  (2)“西瓜问题”

  活动目的:

  能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

  教学效果:

  通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

  4、随堂练习。(约5分钟)

  76页第一题,共3个小题。

  教学效果:

  在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

  5、数学理解(约5分钟)

  教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

  补充例3 计算(xy-x2)÷

  教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

  6、课堂小结(约3分钟)

  先学生分组小结,在全班交流,最后老师总结。

  7、作业布置,凝固新知。(约2分钟)

  教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

  五.说板书设计

  主板书采用纲要式,一目了然。

初中数学优秀说课稿7

  一、教材分析:

  (一) 教材的地位与作用

  从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

  根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

  限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。

  二、学情分析

  初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  三、教学与学法分析

  教学方法

  叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。

  学法指导

  为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。

  四、教学过程

  首先,情境导入 激问设疑

  给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。

  其次,自主探究,获取新知

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  1. 追溯历史 解密真相

  让同学们欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。

  2.动手操作----探求新知

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

  从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

  3、自己动手,拼出弦图

  让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,同学们将展示"割"的方法, "补"的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。

  以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  合作交流,讲述论证

  教材中直接给出"赵爽弦图"的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出"同学们是学习的主体,教师是组织者、引导者与合作者"这一教学理念。同学们会发现两种证明方案。

  方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让同学们体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。

  我按照"理解—掌握—运用"的梯度设计了如下四组习题。

  (1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

  最后、温故反思 任务后延

  在课堂接近尾声时,我鼓励同学们从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体同学们的理念。

  五、板书设计

  板书勾股定理,进而给出字母表示,培养同学们的符号意识。

  六、学习评价

  本课意在创设和谐的乐学气氛,始终面向全体同学们,"以同学们的发展为本"的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。

初中数学优秀说课稿8

  一、教材分析:

  (一) 教材的地位与作用

  从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

  根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

  限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。

  二、学情分析

  初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  三、教学与学法分析

  教学方法

  叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

  学法指导

  为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

  四、教学过程

  首先,情境导入 激问设疑

  给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

  其次,自主探究,获取新知

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  1. 追溯历史 解密真相

  让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2.动手操作----探求新知

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

  从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

  3、自己动手,拼出弦图

  让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,学生将展示"割"的方法, "补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

  以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  合作交流,讲述论证

  教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。

  方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

  方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

  我按照"理解—掌握—运用"的梯度设计了如下四组习题。

  (1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

  最后、温故反思 任务后延

  在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体学生的理念。

  五、板书设计

  板书勾股定理,进而给出字母表示,培养学生的符号意识。

  六、学习评价

  本课意在创设和谐的乐学气氛,始终面向全体学生,"以学生的发展为本"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

初中数学优秀说课稿9

  一。教材分析

  1.教材的地位和作用

  这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从同学们活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以同学们为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

初中数学优秀说课稿10

  我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

  一、教学设计:主要包括三个方面

  1、教材分析:

  垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

  大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

  2、根据以上分析,我确定本节课的教学目标是:

  知识与技能包括垂直的定义垂线的画法与性质。

  数学思考包括

  探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

  解决问题包括

  培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

  情感与态度包括

  让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

  鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

  3、教学重难点:

  教学重点:

  垂直概念的建立、垂线的画法与性质。

  教学难点:

  用数学语言描述垂直的定义以及学生猜想能力的培养。

  二、教学过程设计:

  根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

  1、课题导入

  课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

  2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

  3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

  4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学优秀说课稿11

各位评委:

  大家上午好!

  今天我说课的内容是《勾股定理》。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标、教学重难点、教法学法、教学过程等五个方面加以说明。

  一、教材分析

  本节内容是苏科版数学八年级上册第二章第1节《勾股定理》第1课时。它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。由此可见,《勾股定理》是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

  二、教学目标

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

  1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理

  2、经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

  3、通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

  三、教学重点、难点:

  依据教学目标,我认为本节课的重点是:勾股定理的探讨。

  教学难点:利用数形结合的方法验证勾股定理。

  四、教法和学法

  本节课我将采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

  五、教学过程:

  根据以上分析,下面我具体谈一谈本节课的教学过程.

  (一)创设情境以趣引新

  一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的学习积极性)

  (二)实践探索猜想归纳

  1、(课件出示课本P44图2—1),请同学们观察并回答问题:

  根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积。学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。

  (这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。)

  2、提出问题:是否所有的直角三角形都有这个性质呢

  先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证。仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想。教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。

  (这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到

初中数学优秀说课稿12

  一、教材分析

  1、教材的地位和作用

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  2、教学目标

  根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

  知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

  过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

  情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

  3、教学重点与难点

  要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

  二、教法、学法

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  三、教学过程设计

  1、创设情景,引入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

【初中数学优秀说课稿】相关文章:

初中数学优秀说课稿06-25

初中数学优秀说课稿《垂线》11-15

优秀的初中数学说课稿11-28

初中数学优秀说课稿模板07-20

初中数学的优秀说课稿《梯形》01-15

初中数学优秀说课稿(12篇)11-15

初中数学优秀说课稿12篇11-15

关于初中数学优秀说课稿3篇01-02

初中数学《正数和负数》优秀说课稿06-12

初中数学优秀说课稿(通用5篇)03-05