初中数学面试说课稿

时间:2022-11-20 13:19:10 初中说课稿 我要投稿

初中数学面试说课稿

  作为一名无私奉献的老师,总不可避免地需要编写说课稿,借助说课稿可以有效提高教学效率。我们该怎么去写说课稿呢?以下是小编为大家整理的初中数学面试说课稿,仅供参考,希望能够帮助到大家。

初中数学面试说课稿

初中数学面试说课稿1

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  本节课选自人教版初中数学八年级上册第十二章第一节内容《全等三角形》,属于图形与几何领域。本节课是在学生掌握了三角形的边之间的关系、角之间的关系的基础上进行的学习,主要学习全等三角形的概念、对应顶点、对应边、对应角的概念,以及全等三角形的性质,为后面探究证明全等三角形成立的条件奠定了基础,也为后面要学习的几何证明奠定了基础,故而本节课在教材中起着承上启下的作用。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,而且在生活中也为本节课积累了很多经验。所以,本节课的学习对学生来说是相对比较容易的。故而本节课着重强调让学生自己动手,发现知识,亲身感受知识的形成过程。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握全等三角形的概念及性质。

  (二)过程与方法

  经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

  (三)情感、态度价值观

  感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:全等三角形的概念与性质。教学难点是:全等三角形的性质。

  五、说教法和学法

  数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。所以在这节课中我将采用激、导、探的教学方法。让学生带着问题学、在探索中学、在动手操作中学。在教学中积极培养学生的学习兴趣和动机,明确学习目的。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节,我采用图片导入的方式,在多媒体上播放生活中全等物体的图片,并提问:图片中的图形有什么特点?你们还能不能举出这样的例子?从而引出课题《全等三角形》。

  这样导入的好处是生活中的实例生动有趣,可以很好地吸引学生的兴趣,激发学生的好奇心,建立数学与生活的联系,更好的将数学融入到生活中去。

  (二)讲解新知

  其次是讲解新知环节,这一环节主要是学习全等三角形的相关概念和全等三角形的性质。

  在开始的时候,我会先给学生分发纸板,请他们拿出三角尺按在纸板上,描出三角板,并裁下。在使用剪刀的过程中我会提醒学生注意安全。完成裁剪操作后,我会抛出问题“照图形裁下来的纸板和三角尺的形状、大小完全一样吗?”“把三角尺和裁得的纸板放在一起能够完全重合吗?”

  学生得到答案之后,我会继续在多媒体上给出用同一张底片冲洗出来的两张尺寸一样的照片,请学生观察,并提出问题“两张照片中的图形放在一起是否也能完全重合?”由此我会给出概念:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。

  在提出全等三角形的概念之后,我会顺势在多媒体上展示一个三角形,并以此作出平移、翻折、旋转三种变换,请学生观察,并提问“对于操作前后的两个三角形,什么变了?什么没变?”。期间,我会给学生发放三角形纸片,请学生自己在白纸上进行平移、翻折、旋转这三种变换,并将变换后得到的三角形剪下来,提示可以采取测量、剪裁重合等操作帮助观察,看看什么变了、什么没变。通过这样的操作,学生能够得到位置变化、形状大小不变的结论,我会和学生一起总结:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

  接下来,我会在黑板上呈现平移变换前后的两个三角形,请学生再次动手操作重合步骤,并将两个三角形中重合的顶点、边、角标注出来,也请学生上黑板进行标注,接着根据图示向学生讲解对应顶点、对应边、对应角的概念。在这里我会顺势讲解全等三角形的符号表示。

  前面的教学当中,我让学生反复将全等三角形重合,并寻找其对应边和对应角,为后面学生发现其相等关系做好了铺垫。最后我会抛出问题,在这组全等三角形中,对应边有什么关系?对应角呢?学生能够通过观察或者动手操作得出结论:全等三角形的对应边相等,对应角相等。

  本节课内容是本章的基础性内容,这样就更需要学生亲身感受知识的形成过程,于是我不断设计让学生亲自动手操作,包括制作全等三角形并将其重合等活动,帮助学生感受全等三角形形状大小相同的特点,更好的理解与记忆本堂课的重点知识。

  通过这样一道习题再次巩固如何寻找对应边和对应角。

  (四)小结作业

  最后是课堂小结,我会请学生谈一谈,通过这一节课的学习,你有什么收获?以学生自主总结的方式不仅可以加深对知识点的理解与记忆,还有助于我了解学生的学习情况,便于我调整自己的授课思路与节奏。

  课后思考:我们学习了全等三角形的性质,那如何判断两个三角形是否全等?留下这样的思考问题,可以为下节课的学习做铺垫。

  七、说板书设计

  我的板书设计遵循简洁明了的原则,突出了本节课的重点部分,以下是我的板书设计:

初中数学面试说课稿2

  一、说教材

  “正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识.本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用.作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心.说教法目标

  根据课程标准和学生认知特点,我确定如下三维教学目标:

  (1)知识与技能:

  理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。

  (2)过程与方法:

  探索负数概念的形成过程,使学生建立正数与负数的数感。

  (3)情感态度与价值观:

  实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。

  二、说教学重难度

  根据本节课的教学内容,考虑到学生已有的认知结构和心理特征,我将确定如下教学重难点:

  教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

  教学难点:了解负数的意义及0的内涵。

  三、说教学方法

  为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。

  四、说学法

  鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。

  五、说教学过程

  在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。

  (一)创设情境,引入新课

  首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的.同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚.这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课.这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。

  (二)合作交流,探索新知

  接着,我根据学生已经产生的认知冲突及时地给出4个实际例子让学生练习,帮助他们理解具有相反意义的量,进入合作交流,探索新知的环节.我会在学生练习时进行巡视.具体的例题如下:

  例1:气温有零上3℃和零下3℃;

  例2:高于海平面8848米和低于海平面155米;

  例3:收入50元和支出32元;

  例4:汽车向东行驶4千米和向西行驶3千米.我会让学生对以上例子中出现的每一对量进行讨论.由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词.于是我在学生回答的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量.然后让学生自己举出一些日常生活中具有相反意义的量的实例.学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子.这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的'展开铺平了道路.

  帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示?一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示.通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负.如零上3℃和零下3℃可以表示成+3℃和-3℃;收入50元和支出32元可以表示成+50元和-32元.

  这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界.同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度.(三)巩固练习,熟练技能

  为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能.如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量.在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数.而其中一道练习:如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化就可以记作-3m,水位不升不降时水位变化可以记作0m.这里也要特别强调0表示的意义.由此让学生加深对正、负数概念以及零的意义的理解.课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担.

  (四)总结反思,发展情意

  练习之后,我将引导学生通过回顾本节课所学内容,结合教学目标,归纳总结出本节课的知识要点:(1)用正数与负数表示具有相反意义的量;(2)零既不是正数也不是负数.从而起到了对本节课巩固深化的作用.这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重.(五)布置作业

  最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担.

  各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识.

初中数学面试说课稿3

  尊敬的各位考官,大家好,我是今天的X号考生,今天我说课的题目是《平行四边形的判定》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  本节课选自人教版初中数学八年级下册第十八章18.1.2的内容《平行四边形的判定》。本课主要让学生掌握平行四边形判定的四种方法,会应用平行四边形的判定方法。在此之前,学生已经学习过平行四边形的性质,为本节课的学习打下了良好的基础。同时,本节课的学习也为今后进一步学习特殊的平行四边形等相关知识起到了铺垫的作用。

  二、说学情

  接下来谈谈学生的实际情况。八年级的学生已经掌握了一定的基础知识,有着良好的学习习惯,上课时能积极思考,主动、创造性的学习。而且各个方面都已经发展的比较完善,具备了一定的分析问题能力和解决问题的经验,教学过程相对而言比较顺畅。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握平行四边形的四条判定定理,会用判定定理解决相应问题。

  (二)过程与方法

  经历探究和证明平行四边形判定定理的过程,提升逻辑推理能力和解决问题的能力。

  (三)情感、态度与价值观

  体会方法的多样性,激发学习兴趣,感受几何思维的真正内涵。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平行四边形的判定定理。教学难点是:平行四边形判定定理的证明和应用。

  五、说教法和学法

  依据新课程改革精神与学生认知发展现状,突破难点有效实现知识的巩固,我将采用讲解法、启发引导法、练习法等教学方法,并在教学过程中有意识的培养学生的合作探究能力、自主探究能力,使之真正意义上成为学会学习的人。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节。我采用复习导入的方法,请学生回忆平行四边形的定义及性质,然后提问怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?由此引出今天学习的内容《平行四边形的判定》。

  从简单的回顾中引入新课,既复习了旧知,又为探索新知做好铺垫,同时使学生感受到知识之间的联系。

  (二)探索新知

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、启发法等。

  结合导入部分学生回答的平行四边形对边相等,对角相等,对角线互相平分,提出问题:反过来对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?也就是它们的逆命题是否成立呢?

  接下来组织学生进行实验验证。实验一:取两长两短的四根木条用小钉钉在一起,做成一个四边形,其中两根长木条长度相等,两根短木条长度相等。如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。通过动手操作直观感受,学生能初步得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

  紧接着继续提问学生:你能根据平行四边形的定义证明它们吗?如何证明“对角线互相平分的四边形是平行四边形”?先请学生将命题翻译成符号语言,指出已知和待证结论。接着我给出提示:观察两条对角线将平行四边形分割成什么样的图形?如何判定其中一组对边平行?判定平行需要的条件怎么得到?给出思路引导后,组织学生小组合作完成证明。学生完成后,我规范证明过程的书写。由于时间所限,我会直接告诉学生两组对边分别相等或两组对角分别相等的四边形也是平行四边形,证明留给学生课后完成,并明确平行四边形的判定定理与相应的性质定理互为逆定理。

  接着我会提出一个思考题:如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?并给出思路引导:先想想平行四边形的一组对边有什么性质?写出逆命题是否成立,能否作为判定方法?请学生稍作讨论,得出猜想:一组对边平行且相等的四边形是平行四边形。然后继续小组合作证明。我会鼓励学生使用不同方法,可以直接应用前三条判定定理。学生不难完成证明并得到平行四边形的第四个判定定理:一组对边平行且相等的四边形是平行四边形。紧接着我会引导学生分别从边、角、对角线等方面梳理平行四边形的判定方法,及时巩固。

  在本环节中,引导学生合作探讨,再结合老师的适时引导以及讲解,帮助学生深刻的理解。全面发挥了学生的主观能动性,提高了学生的学习兴趣。

初中数学面试说课稿4

  一、教材分析

  (一)教材的地位与作用

  从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

  根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

  二、教学与学法分析

  教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

  学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

  三、教学过程

  我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

  首先,情境导入古韵今风

  给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

  第二步追溯历史解密真相

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为

  3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面“勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

  使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。

  以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  第三步推陈出新借古鼎新

  教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。

  方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。

  教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。

  第四步取其精华古为今用

  我按照“理解—掌握—运用”的梯度设计了如下三组习题。

  (1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用

  第五步温故反思任务后延

  在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体学生的理念。

【初中数学面试说课稿】相关文章:

初中数学经典说课稿11-30

初中数学的说课稿11-08

初中数学精选说课稿01-10

初中数学教师面试说课稿(通用13篇)04-24

初中物理面试说课稿06-26

小学数学面试说课稿《通分》07-20

关于小学数学面试说课稿10-24

小学数学面试说课稿范本10-24

小学数学面试说课稿范文10-24

小学数学面试《面积》说课稿09-23