初中数学的说课稿

时间:2022-12-02 14:18:49 初中说课稿 我要投稿

初中数学的说课稿(通用15篇)

  作为一名默默奉献的教育工作者,时常要开展说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。怎么样才能写出优秀的说课稿呢?下面是小编收集整理的初中数学的说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学的说课稿(通用15篇)

初中数学的说课稿1

  一、教材分析:

  (一) 教材的地位与作用

  从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

  根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

  限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。

  二、学情分析

  初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  三、教学与学法分析

  教学方法

  叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

  学法指导

  为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

  四、教学过程

  首先,情境导入 激问设疑

  给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

  其次,自主探究,获取新知

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  1. 追溯历史 解密真相

  让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2.动手操作----探求新知

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

  从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

  3、自己动手,拼出弦图

  让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,学生将展示"割"的方法, "补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

  以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  合作交流,讲述论证

  教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。

  方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

  方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

  我按照"理解—掌握—运用"的梯度设计了如下四组习题。

  (1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

  最后、温故反思 任务后延

  在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体学生的理念。

  五、板书设计

  板书勾股定理,进而给出字母表示,培养学生的符号意识。

  六、学习评价

  本课意在创设和谐的乐学气氛,始终面向全体学生,"以学生的发展为本"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

初中数学的说课稿2

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:

  引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:(1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:练习册第93页1、2、3

  八、教学反思:

  1、教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学的说课稿3

  一、教材分析

  (一)教材的地位和作用

  本节课是华师大版七年级数学下册第十章《统计初步认识》中,第三节的内容。主要让学生认识数据统计中三个基本统计量,是一堂概念课,也是学生学会分析数据,作出决策的基础。本节课的内容与学生生活密切相关,能直接指导学生的生活实践。

  (二)教学的目标和要求

  知识目标:理解平均数、众数与中位数的含义,掌握平均数、中位数与众数计算方法,明确平均数、中位数肯定有,众数却不一定有的事实;

  能力目标:会计算一组数据的平均数,会确定一组较简单的数据的众数与中位数,培养独立思考,勇于创新,小组协作的能力;

  情感目标:体验事物的多面性与学会全面分析问题的必要性,渗透诚实、上进道德观念,培养吃苦创新精神。

  (三)教学的重点和难点

  教学重点:三个基本统计量的概念以及其计算和确定方法;

  教学难点:平均数的计算,中位数众数的确定。

  二、教法与学法

  本节课使用多媒体教学平台;概念教学中,主要以生活实例为背景,从具体的事实上抽象出三个统计量的概念,通过三个统计量的计算与确定的练习帮助学生理解并巩固概念;在教学活动中主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。

  同时,注重培养学生阅读理解能力与自学协作能力,在教学过程中主要以学生“探究自学”“小组讨论”“相互学习”的学习方式而进行。

  三、教学过程的分析

  (一)创设情境,激发兴趣(3分钟)引入采用“故事法”引入——《从四十名到第十名》。通过这个生动有趣的故事使学生充分体验到全面了解并分析数据的必要性。如何能对数据全面了解分析?今天我们将学习从三个不同侧面反映一组数据的三个统计量——平均数、中位数与众数。通过生动的故事,也是集中学生注意力的一种有效方式。

  (二)自学辅导,建构新知(11分钟)

  提出概念:(3分钟)

  在学生还沉浸在有趣的故事情节的中时,对故事的情节设问:主人公的成绩在哪一档次?中等成绩约是多少?哪一档分数的人最多?学生一一作答。在此基础上,老师把平时生活中的说法(如:中等成绩)规范化并抽象出统计中的基本概念(如:中位数)。

  这样可以使新的概念建立在学生已有的生活经验上,便于理解和记忆。自学辅导:(8分钟)

  学生以学习小组为单位,结合教材,必须想办法求出故事中的三个统计量,并找出平均数、中位数与众数的计算方法。(小组讨论、教师辅导)。

  因为新教材的编写比较适合学生阅读,这一节内容与学生的实际生活联系较多,学生多有体验,要让学生理解并没有太大的困难。这样也可以充分发挥学生主观性,培养学生的自学能力与小组协作的能力,充分利用“学生资源”,使他们互相帮助,体验在集体中的成长与发展。巩固整理:(20分钟)

初中数学的说课稿4

  一、教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、课堂教学过程设计

  (一)从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  例1某数的3倍减2等于某数与4的和,求某数。

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3。

  答:某数为3。

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4。

  解之,得x=3。

  答:某数为3。

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

  (二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42 500,

  所以x=50 000。

  答:原来有50 000千克面粉。

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:

  (1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿。

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

  例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5。

  其苹果数为3× 5+9=24。

  答:第一小组有5名同学,共摘苹果24个。

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

  (设第一小组共摘了x个苹果,则依题意,得)

  (三)课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

  3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

  (四)师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆。

  (五)作业

  1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

初中数学的说课稿5

  一、教材分析

  ▲教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  ▲学情分析

  ①说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  ②说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  ③说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  ▲教材重难点

  重点:幂的乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  ㈠知识与技能目标

  ⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

  ⑵掌握幂乘方法则。

  ⑶会运用法则进行有关计算。

  ㈡过程与方法目标

  ⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  ㈢情感、态度与价值观

  体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  四、教材处理

  ⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  ⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  ⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  ⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  五、教学过程

  学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

  ①创设情境,引入课题。

  ②自主探索,展示新知。

  ③应用新知,解决问题。

  ④反馈练习,拓展思维。

  ⑤学有所思,感悟收获。

  ⑥布置作业,学以致用。

  1、创设情境,引入课题

  《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

  问题1:同底数幂的乘法法则是怎么样的?

  问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

  设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

  2、自主探索,展示新知

  (1)自主探索

  出示幻灯片试一试

  请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n

  (多媒体演示时,先出现①②,再出现③,最后出现④)

  设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

  (2)合作交流,展示成果

  计算:(am)n

  设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

  3、应用新知,解决问题

  (1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

  ①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5

  ⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4

  设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

  (3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

  (2)出示例2:计算下列各式

  ①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4

  ③(-2)2(-23)4 ④100010n(103)2

  设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

  ②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

  (3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

  设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

  4、反馈练习,拓展思维

  (1)出示改错题(多媒体演示)

  下列各题计算正确吗?

  ①(x2)3+x5=x5+x5=2x5

  ②x3x6+(x3)3=x9+x9=x18

  ③x2(x4)2+x5x2=x10+x10=x20

  设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

  (2)设计一个探究活动(多媒体演示)

  魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

  设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

  5、学有所思,感悟收获

  设计三个问题:

  ①通过本节课学习,你学会了哪些知识?

  ②通过本节课学习,你最深刻的体验是什么?

  ③通过本节课学习,你心里还存在什么疑惑?

  设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

  6、布置作业,学以致用

  必做题:作业本

  选做题:①已知1624326=22x-1,(102)y=1020求x+y.

  ②已知:比较2100与375的大小。

  设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

  六、板书设计幂的乘方幂的乘方法则的

  推导过程同底幂的乘法法则

  幂的乘方法则范例板书

  学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

  七、设计说明

  1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。

  2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!

初中数学的说课稿6

  说教材

  “正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识.本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用.作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心.

  说教法目标

  根据课程标准和学生认知特点,我确定如下三维教学目标:

  (1)知识与技能:

  理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。

  (2)过程与方法:

  探索负数概念的形成过程,使学生建立正数与负数的数感。

  (3)情感态度与价值观:

  实际例子的'引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。

  说教学重难度

  根据本节课的教学内容,考虑到学生已有的认知结构和心理特征,我将确定如下教学重难点:

  教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

  教学难点:了解负数的意义及0的内涵。

  说教学方法

  为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。

  说学法

  鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。

  说教学过程

  在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。

  (一)创设情境,引入新课

  首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的.同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚.这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课.这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。

  (二)合作交流,探索新知

  接着,我根据学生已经产生的认知冲突及时地给出4个实际例子让学生练习,帮助他们理解具有相反意义的量,进入合作交流,探索新知的环节.我会在学生练习时进行巡视.具体的例题如下:

  例1:气温有零上3℃和零下3℃;

  例2:高于海平面8848米和低于海平面155米;

  例3:收入50元和支出32元;

  例4:汽车向东行驶4千米和向西行驶3千米.

  我会让学生对以上例子中出现的每一对量进行讨论.由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词.于是我在学生回答 的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量.然后让学生自己举出一些日常生活中具有相反意义的量的实例.学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子.这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路.

  帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示? 一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示.通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负.如零上3℃和零下3℃可以表示成+3℃和-3℃;收入50元和支出32元可以表示成+50元和-32元.

  这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界.同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度.

  (三)巩固练习,熟练技能

  为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能.如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量.在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数.而其中一道练习:如果水位升高3m 时水位变化记作+3m,那么水位下降3m 时水位变化就可以记作-3m,水位不升不降时水位变化可以记作0m.这里也要特别强调0表示的意义.由此让学生加深对正、负数概念以及零的意义的理解.课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担.

  (四)总结反思,发展情意

  练习之后,我将引导学生通过回顾本节课所学内容,结合教学目标,归纳总结出本节课的知识要点:(1)用正数与负数表示具有相反意义的量;(2)零既不是正数也不是负数.从而起到了对本节课巩固深化的作用.这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重.

  (五)布置作业

  最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担.

  各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识.

初中数学的说课稿7

各位评委、各位老师、大家上午好!

  今天我说课的内容是人教版八年级下册第五章第4节《数据的波动》(第一课时)。现在我就教材、教法、学法、教学流序、板书五个方面进行说明。还恳请在座的各位专家、同仁批评、指正。

  一、说教材:

  1.本节课的重要内容:探究数据的分离程度及了解“极差”“方差”“尺度差”三个量度及其现实意义。重要是运用详细的生存情境,让门生感觉到当两组数据的 “均匀程度”相近时,而现实题目中详细意义却千差万别,因而必须研究数据的颠簸状态,阐发数据的差别,渐渐抽象出描画数据分离程度的“极差”“方差”“尺度差”的三个量度,并掌握使用盘算器求方差和尺度差。

  2.职位地方作用:纵观本章的课本摆设体系,以数据“网络—表现—处置处罚—评判”的次序睁开。数据的颠簸是对一组数据变革的趋向举行评判,通过效果评判形成决议筹划的讲授,是数据处明白决现真相景题目必不行少的重要关键,是本章学习的终纵目标和落脚点。通过本节的学习为处置处罚种种较为庞大的现真相境的数据题目打下底子。

  3.教学目标:依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。

  (2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。

  (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

  4.重点与难点:重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。

  难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

  二、说教法:

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:

  1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。

  2.比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

  3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。

  4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

  三、说学法:

  教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:

  (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。

  四、说教学程序:

  1.创设情境,导入新课:<1>、展示情景(链接奥运会中韩运动员设计的情景)。<2>、学生观察阅读分析(描述运动员射箭的平均水平)。<3>、分析思考寻求解决方案(观察表格数据求平均数)。<4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出课题——数据的波动)

  2、新课: (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)

  <1>、概念介绍: a、数据的离散程度(是相对于平均水平的偏离情况);b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);c、练习巩固计算极差;

  <3>、引进概念:a、概念“方差”(各个数据与平均数之差的平方的平均数),给出计算公式: S2= 1/n [(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ]b、给出“标准差”的概念(方差的算术平方根)。c、学生相互交流学习操作计算器计算方差和标准差。

  <5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

  <2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

  4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

  5、布置作业:P—199(1)(2)(3-选作题):

  五.说板书设计

  板书计划为表款式,如许的板书函明显白,重点突出,加深学生对重点知识的明白和掌握,同时便于比力和影象,有利于进步讲授结果。

初中数学的说课稿8

  一、素质教育目标

  (一)知识教学点

  1.掌握的三要素,能正确画出.

  2.能将已知数在上表示出来,能说出上已知点所表示的数.

  (二)能力训练点

  1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

  2.对学生渗透数形结合的思想方法.

  (三)德育渗透点

  使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

  (四)美育渗透点

  通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

  二、学法引导

  1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

  2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

  三、重点、难点、疑点及解决办法

  1.重点:正确掌握画法和用上的点表示有理数.

  2.难点:有理数和上的点的对应关系。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  师生同步画,学生概括三要素,师出示投影,生动手动脑练习

  七、教学步骤

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—(板书课题).

  【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的.意识.

  (二)探索新知,讲授新课

  1.的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

  让学生观察画好的直线,思考以下问题:

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

初中数学的说课稿9

各位专家领导:你们好!

  今天我说课的内容是人教版七年级上册1.2.4 绝对值内容。

  首先,我对本节教材进行一些分析:

  一、教材分析( 说教材) :

  ( 一) 、教材所处的地位与作用:

  本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4 节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容, 这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备! 所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。

  ( 二) 、教育教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

  1 、知识目标:

  1) 使学生了解绝对值的表示法,会计算有理数的绝对值。

  2) 能利用数形结合思想来理解绝对值的几何定义; 理解绝对值非负的意义。

  3) 能利用分类讨论思想来理解绝对值的代数定义; 理解字母a 的任意性。

  2 、能力目标:

  通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

  3 、思想目标:

  通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。

  ( 三) :重点,难点以及确定的依据:

  本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a 的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

  下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:

  二、教学策略( 说教法)

  ( 一) 、教学手段:

  由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“ 多观察、动脑想、大胆猜、勤钻研” 的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验与发展,从而培养学生的数形结合的思想。

  为充分发挥学生的主体性与教师的主导辅助作用,教学过程中我设计了七个教学环节:

  1 、温故知新,激发情趣 2 、得出定义,揭示内涵

  3 、手脑并用,深入理解 4 、启发诱导,初步运用

  5 、反馈矫正,注重参与 6 、归纳小结,强化思想

  7 、布置作业,引导预习

  ( 二) 、教学方法及其理论依据:

  坚持“ 以学生为主体,以教师为主导” 的原则,即“ 以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后” 的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

  三:学情分析:( 说学法)

  1 、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  2 、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。

  3 、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上; 另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  4 、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  最后我来具体谈一谈这一堂课的教学过程:

  四、 教学程序设计

  ( 一) 、温故知新,激发情趣:

  首先打出第一张幻灯片复习提问:什么叫做相反数? 学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗? 学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  ( 二) 、得出定义,揭示内涵:

  由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,(absolute value) 这个定义学生接受起来比较容易。

  给出定义后引导学生讨论:“ 定义里的数a 可以表示什么样的数?

  ( 通过教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到:绝对值定义里的数a 可以是正数,负数和0 。

  然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?

  ( 三) 、手脑并用,深入理解:

  1 、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字? 在此不用提问学生,采取自问自答形式给出绝对值的记法。

  2 、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“ 非常好”“ 非常规范”“ 老师相信你,你一定行” 等语言来激励学生,以促进学生的发展; 并再次强调绝对值的定义。

  3 、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议 一个数的绝对值与这个数有什么关系? 启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。

  ( 四) 、启发诱导,初步运用:

  有了绝对值的两个定义后,我安排了10 道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。

  ( 五) 、反馈矫正,注重参与:

  为巩固本节的教学重点我再次给出三道问题:

  1) 绝对值是7 的数有几个? 各是什么? 有没有绝对值是-2 的数?

  2) 绝对值是0 的数有几个? 各是什么?

  3) 绝对值小于3 的整数一共有多少个?

  先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。

  ( 六) 、归纳小结,强化思想:

  ( 七) 、布置作业,引导预习:

  1 、全体学生必做课本习题 1.2 3 ,4 ,5 ,10 。

  2 、选作两道思考题:

  (1) 求绝对值不大于2 的整数;(2) 已知x 是整数,且2.5<|x|<7 , 求x.

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

  以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

初中数学的说课稿10

  一、教材分析

  本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。

  二、教学目标:

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

  1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。

  2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。

  3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。

  三、教学重点、难点:

  依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。 难点是:轴对称与轴对称图形之间的联系和区别.

  四、教法、学法

  为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。

  五、教学过程:

  根据以上分析,下面我具体谈一谈本节课的教学过程. 探究活动(一):轴对称图形

  1、激趣导入、感受生活(用多媒体演示生活中的有关画面) 图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。然后,教师适时提出问题:这些图形是如何对称?怎样才能使对称的部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。使学生感受到生活中处处有数学数学就在我们身边,激发学生学习数学的兴趣。

  2、活动探究形成概念:实验探究:把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试。在欣赏、感知轴对称的基础上,学生肯定急于了解这些图形到底美在哪里。因此我设置了剪纸活动,让学生通过动手实践来创造美,在操作中感知轴对称图形的概念。而后再对比上一活动中部分图案,互相交流发现它们的共同的特征“存在直线——将其折叠——互相重合”。从而合作归纳得出概念,教师板书概念。

  3、联系实际举出几个轴对称图形实例,并说出对称轴(附课件)

  学生根据自己的生活经验,说出符合条件的图形,让学生体会轴对称图形在生活中的广泛存在,生活中的许多轴对称图形,他们不但体现了一种对称美,还蕴涵一定的科学道理,你们知道吗?①表盘的对称保证了走时的均匀性②飞机的对称使飞机能够在空中保持平衡;③人眼睛的对称使人观看物体能够更加准确全面;④双耳的对称能使听到声音具有较强的立体感……

  4、综合练习,发散思维: 这组习题的设计有图形、数学……挖掘了生活右多种图案,加强了学科间的渗透与学科间的整合,让学生在相互争论、补充、交流中寻找知识的答案,体会学习的乐趣。

  探究活动(二):轴对称

  1、动手操作,引入新知

  将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?再观察教材119页图14.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?因为学生已经了解到轴对称图形的概念,他们可能会错误地认为两个图形成轴对称和轴对称图形都是对称,没有什么差别。所以先运用动手实践,进行剪纸,借助人的各种感官认识,突出两个图形成轴对称是指“两个图形重合”这一特点。按照“存在直线——将其折叠——两图形重合”这条主线,在老师的引导下,学生得出两个图形成轴对称、对称点的概念。教师板书概念。

  2、巩固练习,应用提高(课件)对所学的知识加以理解和巩固

  3、列举实例,展示才华 举出生活中成轴对称的例子,加深对轴对称的理解。

  活动(三):归纳总结 观察下面两个图形,说说你的发现。 对比轴对称与轴对称图形:(列出表格,加深印象) 轴对称 轴对称 轴对称 轴对称图形 是两个 两个图形之间的关系 是一个 一个图形形本身具有的特性 对折后 两个图形完全重合 翻折后 与图形的另一半完全重合 区别:轴对称指的是“两个”图形之间的对称关系,而轴对称图形是指“一个”图形具有的对称性质。

  联系:①都是用对折、翻折180°图形重合来定义的;

  ②两者可相互转化,如果把轴对称的两个图形看成是一体的,那么这“一个”图形就是轴对称图形,反过来,如果把一个轴对称图形互相对称的两部分看成是两个图形,那么这“两个”图形是轴对称的。这里渗透整体与部分的辨证关系,进一步发展学生抽象思维能力。

  活动(四):识别图形、感受对称美

  (1)、欣赏图片,体会轴对称所营造的对称美。

  (2)、在计算器显示的数字0至9中,有哪些是轴对称的?许多汉字都是轴对称图形,如:田、日、曰、中、申、王等等。各公司、企业的商标中有许多轴对称实例和轴对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行;各品牌汽车的车标中有许多都是轴对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马;矩形、菱形、正方形、等边三角形等都是轴对称图形;线段也是轴对称图形,线段的垂直平分线就是它的对称轴。

  强调:图形的对称轴是直线,不是线段、射线,而是线段、射线所在的直线。比如学生容易认为角平分线是角的对称轴,等腰三角形底边上的高是它的对称轴,可以很好达到纠正错误的功效。其次掌握角、等腰三角形各有一条对称轴,长方形有两条,等边三角形有三条,正方形有四条对称轴,而圆形是最特殊的轴对称图形,有无数条对称轴,所以它的对称性应用最广泛。这样可以使学生运用图形的对称性解决今后一些相关问题。

  活动(五):动手操作、积极实践、创造图形

  (1)、在给出轴对称图形的一半的基础上,让学生在对称轴的另一边画出另一半,成为一个完整的轴对称图形。由简到难,层层第进。

  (2)、让学生发挥自己的想象力和创造力,用自己的双手创造一个美丽的轴对称图形。

  (这个部分的设计,具有开放性,能充分发挥学生的想象力和创造力、动手能力、使学生成为学习的真正主人,给了学生自我表现、自我创造的空间,有利于培养学生积极的学习态度和学数学的亲切感,也有利于培养学生对美的感受能力。)

  (六):课堂小结

  (1)、本节课学到了哪些知识?

  (轴对称和轴对称图形的定义;轴对称图形的性质;我们所学的多边形中有哪些是轴对称图形;轴对称图形的应用。)

  (2)、谈谈你对本节课学习的体会与困惑。

  (七):作业设计

  发挥你们的想象,利用本节所学的知识,为我们班设计一个班徽,要求设计的图案是轴对称图形或成轴对称,并有一定寓意。这是一道富有开放性、趣味性和挑战性的作业题,给学生提供发挥想象力和创造力的平台,使学生的活动由课内走向生活。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢!

初中数学的说课稿11

  一.教材分析

  (说教材)

  一.教材内容分析

  数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。

  二.学情分析(学生情况分析)

  本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。

  三.教学目标

  根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:

  A、知识技能:

  1、理解数轴概念,会画数轴。

  2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

  B、数学思考:

  1、从直观认识到理性认识,从而建立数轴概念。

  2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

  C、解决问题:会利用数轴解决有关问题。

  D、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。

  四.重点、难点(说教学重点、难点)

  本节课教学重点我确定为:数轴的概念。

  因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。

  本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。

  因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。

  教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。

  五.学习方法和教学方法

  1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

  根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学

  通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

  2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。

  “凡事预则立,不预则废”,充分的课前准备是成功的一半。

  六.教学准备

  老师:要充分备课,精心制作多媒体课件,准备教具

  学生:要认真预习,准备直尺或三角板

  七、教学过程分析

  课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:

  (一)、复习旧知

  通过对已知知识的回顾复习,使学生更易于接受新知识。

  (二)、创设情景,引入课题

  为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:

  观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。

  学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。

  接下来,我创设了这样一个情境:

  在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

  前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:

  再次观察所画情境图、温度计

  并引导学生观察、比较,将其抽象成一条直线。

  这样,就把正数、0和负数用一条直线上点表示出来。

  (三)、学习概念,解决问题

  通过刚才的观察、比较,我引出了新课:

  1)学习数轴的概念

  我先进行讲解:

  一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:

  (1)在直线上任取一个点表示数0,这个点叫做原点。

  (2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。

  (3)选取适当的长度为单位长度,每隔一个单位长度取一个点。

  再画数轴

  师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

  设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

  3)在数轴上表示右边各数:

  4)指出数轴上A,B,C,D各点分别表示什么数。

  设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

  下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。

  通过填空,老师引导学生做出课本第12页的归纳

  设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

  课堂练习:

  1)课本第12页的练习1、2题

  2)强化练习:

  (1)在数轴上标出到原点的距离小于3的整数。

  (2)在数轴上标出-5和+5之间的所有的整数。

  设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

  小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?

  1)数轴的三要素:原点、正方向、单位长度。

  2)画数轴的步骤:

  1.画直线;

  2.在直线上取一点作为原点;

  3.确定正方向,并用箭头表示;

  4.根据需要选取适当单位长度。

  作业:课本第17页习题1.2第2题;学生用书同步训练

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  八、教学设计说明

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

初中数学的说课稿12

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.

  三、 教学过程设计

  1创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.

  通过以上实验归纳总结勾股定理.

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.

  三.回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.

  四、知识拓展巩固深化

  基础题,情境题,探索题.

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.

  五、感悟收获布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料.

  板书设计

  探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.

  初中数学说课稿课件:《认识平行四边形

  【说教材】

  一、说课内容:苏教版数学四年级下册第43~45页。

  二、教学内容的地位、作用和意义:

  这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。

  三、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)认识平行四边形的底和高,会画高。

  (3)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

  四、教学重点、难点:

  教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

  教学难点:是学生在做平行四边形的过程中体会其特征。

  五、说教具和学具准备

  教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

  学具:三角板、平行四边形纸片、量角器。

  【说学情】

  四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

  【说教法和学法】

  这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

  一、联系生活实际进行教学

  “数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

  二、让学生在活动中探究

  心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

  三、独立思考与合作交流

  本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。

  【说教学程序】

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】

初中数学的说课稿13

  一、教学目标

  1、了解二次根式的意义;

  2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3、掌握二次根式的性质和,并能灵活应用;

  4、通过二次根式的计算培养学生的逻辑思维能力;

  5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

  二、教学重点和难点

  重点:

  (1)二次根的意义;

  (2)二次根式中字母的取值范围。

  难点:确定二次根式中字母的取值范围。

  三、教学方法

  启发式、讲练结合。

  四、教学过程

  (一)复习提问

  1、什么叫平方根、算术平方根?

  2、说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式。

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略。

  说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学的说课稿14

  一、教学目的:

  1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

  二、重点、难点

  1.教学重点:菱形的两个判定方法.

  2.教学难点:判定方法的证明方法及运用.

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

  四、课堂引入

  1.复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1菱形的四条边都相等;

  性质2菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形.

  注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

  通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

  菱形判定方法2四边都相等的四边形是菱形.

  五、例习题分析

  例1(教材P109的例3)略

  例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

  求证:四边形AFCE是菱形.

  证明:∵四边形ABCD是平行四边形,

  ∴ AE∥FC.

  ∴ ∠1=∠2.

  又∠AOE=∠COF,AO=CO,

  ∴ △AOE≌△COF.

  ∴ EO=FO.

  ∴四边形AFCE是平行四边形.

  又EF⊥AC,

  ∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).

  ※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

  求证:四边形CEHF为菱形.

  略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

  所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

  六、随堂练习

  1.填空:

  (1)对角线互相平分的四边形是;

  (2)对角线互相垂直平分的四边形是________;

  (3)对角线相等且互相平分的四边形是________;

  (4)两组对边分别平行,且对角线的四边形是菱形.

  2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

  3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

  七、课后练习

  1.下列条件中,能判定四边形是菱形的是().

  (A)两条对角线相等(B)两条对角线互相垂直

  (C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

  2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

  3.做一做:

  设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形。

初中数学的说课稿15

各位专家、各位老师:

  大家好!

  今天我说课的内容是人教版七年级数学下册第六章《因式分解》第一节课的内容·

  一、说教材

  (一)教材的地位与作用

  因式分解是代数式的一种重要恒等变形·它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系·它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理·这一思想实质贯穿后继学习的各种因式分解方法·通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备·因此,它起到了承上启下的作用·

  (二)教学目标

  根据新课程标准以及因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:

  1·知识目标:

  理解因式分解的概念;掌握从整式乘法得出因式分解的方法·

  2·能力目标:

  培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力;培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法·

  3·情感目标:

  培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯;体会事物之间互相转化的辨证思想,从而初步接受对立统一观点·

  (三)教学重点与难点·

  本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维·在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成·因此我将本课的学习重点、难点确定为:

  教学的重点:因式分解的概念

  教学的难点:认识因式分解与整式乘法的关系,并能意识到可以运用整式乘法的一系列法则来解决因式分解的各种问题·

  二、说学情

  1·学生已经学习整式的乘法、乘法公式以及整式的除法的学习·

  2·八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习·

  三、说教法学法

  教发与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”·就本节课而言,在教法上不妨利用对比教学,让学生体验因式分解概念产生的过程;利用类比教法、讲练结合的教学方法,以概念的形成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈·不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的·

  四、教学过程·

  本节课教学过程分以下六个环节:

  创设情景,引出新知; 观察分析,探究新知;

  师生互动,运用新知; 强化训练,掌握新知;

  整理知识,形成结构; 布置作业,巩固提高·

  具体过程设计如下:

  第一环节:创设情景,引出新知

  我先出示几个整式乘法的练习,让学生做·教师巡视·

  学生完成习,一是复习整式的乘法,激活学生原有整式乘法的认知结构,满足“温故而知新”的后,教师引导:把上述等式逆过来看一看还成立吗?

  安排这样的练教学原理·二是为本节课目标的达成作好铺垫·在此基础上引出课题——因式分解·

  第二环节:观察分析,探究新知

  全班两个组,比赛看哪一组算的快,当a=101,b=99时,第一组求a2—b2的值,第二组求(a+b)(a—b)·教师巡视,代表性地抽取两名学生板演,给出两种解法·

  安排这一过程是想利用对比分析,让学生体会,把a2—b2化为整式积的形式,会给计算带来简便,顺应了因式分解概念的引出·

  问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮,是学生知识及能力获得发展的有效动力·故在教因式分解概念时,我设计以下两个问题:

  (1) 你能尝试把a2—b2化成几个整式的积的形式吗?并与小学所学的因数分解作比较·

  (2) 因式分解与整式乘法有什么关系?

  让学生分四人小组讨论·归纳因式分解的定义·

  一个多项式→几个整式+积→因式分解

  我特设三个例题,这几个题目完全放手让学生自主进行,充分暴露学生的思维过程,使学生真正成为学习的主体·通过例1、例2罗列一些似是而非、容易产生错误的对象让学生辨析,让学生进一步体会整式乘法与因式分解的互逆关系·促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构·通过例3体会用分解因式解决相关问题的简捷性·

  第三环节:强化训练,掌握新知

  数学家华罗庚先生说过:“学数学而不练,犹如入宝山而空返”·适当的巩固性,应用性练习是学习新知识,掌握新知识所必不可少的·为了促进学生对新知识的理解和掌握,我及时安排学生完成两个练习·通过这两个练习让学生学会辨析因式分解这种变形·使学生进一步理解和掌握因式分解,为下一节提取公因式法进行因式分解打基础;同时又训练、培养和发展学生的基本技能和能力·

  第四环节:整理知识,形成结构·

  最后我设计了一个表格的形式进行归纳小结·使学生对知识的掌握上升为一种能力,并纳入已有的认知结构,同时也培养了学生的概括提炼能力·

  第五环节:布置作业,巩固提高·

  在作业上我布置了看书、作业本、思考题·这样既有利于学生巩固所学内容,又让不同层次的学生得到相应的发展·

  五、说板书

  在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆·

【初中数学的说课稿】相关文章:

初中数学精选说课稿01-10

初中数学的说课稿11-08

初中数学经典说课稿11-30

初中数学的说课稿12-02

初中数学的说课稿范文03-20

初中数学圆说课稿03-20

初中数学《菱形》说课稿11-24

初中数学说课稿10-25

初中数学的说课稿—数列11-04

初中数学面试说课稿11-20