初中数学说课稿

时间:2024-03-11 12:08:12 初中说课稿 我要投稿

初中数学说课稿

  作为一名老师,总不可避免地需要编写说课稿,借助说课稿可以让教学工作更科学化。写说课稿需要注意哪些格式呢?以下是小编收集整理的初中数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学说课稿

初中数学说课稿1

  各位领导、老师大家好:

  今天说课的题目是八年级(下册)第六章第一节《矩形》第一课时。下面我分设计理念与思路、教材分析、学生分析、教学目标、教学过程设计、板书设计等六个方面说一下这节课。

  一、设计理念与思路:

  新课标以培养学生的能力为目标,积极倡导他们亲身经历探究为主的学习活动,培养他们的好奇心和探究欲,发展他们对科学本质的理解,使他们学会探究解决问题的策略,为他们的终身学习和生活打好基础。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。在课堂教学中,帮助学生检视和反思自我,唤起学生成长的渴望;帮助学生寻找、搜集和利用学习资源,设计恰当的学习活动;帮助学生发现他们所学东西的实际意义,营造和维持学习过程中积极的心理氛围;故此本课从生活中的数学(做窗框)入手,充分展示“观察、操作-猜想、探索-说理”的认识过程,使学生能在直观的基础上学习说理,体现直观与简单推理的融合基础知识的掌握与能力的形成。

  二、教材分析:

  本节课是平行四边形与特殊平行作业(矩形、菱形和正方形)之间第一课时,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的.应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。在研究几个图形之间的从属关系时也涉及了辨证思维和认识论的一些观点,这对于发展学生的逻辑思维能力和渗透辨证唯物主义观点的教育,都有一定的作用。

  三、学生分析:

  学生在小学学习过长方形的简单知识,有了这样的基础,再加上八年级学生思维活跃,兴趣广泛,获取信息渠道多,对新事物的追求与敏感,他们完全有能力通过自主探究的学习方式借助老师恰当的点拨,来学好矩形的性质。这就要求我们在课堂上要敢于放手,让学生去想,去说,去做,去表达,去自我评价,去体会成功的喜悦。面对问题,让学生大胆实践,使学生在实践中发现真知,从而体验到成功的喜悦,更加增强了学好数学的信心,促进学生形成积极乐观的态度和正确的人生观。

  四、教学目标:

  知识目标:

  1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.

  2、会初步运用矩形的概念和性质来解决有关问题.

  3、渗透运动联系、从量变到质变的观点.

  能力目标:使学生能应用矩形定义、性质等知识,解决有关问题,进一步培养学生的逻辑推理能力。

  情感目标:通过引入,使学生加深对矩形概念的理解,并以此激发学生的探索精神。

  教学重点:矩形的性质。

  教学难点:矩形的性质的灵活运用、学生的书写。

  五、教学过程设计:

  1、情境创设:

  让学生从生活中的数学引入(做窗框)入手,引导学生注重观察生活,从而进一步研究矩形的性质进入学习情境。

  2、探索活动:

  活动一操作-观察-探索

  活动分三个层次:

  第一层次:让学生了解做窗框的过程,即从中包含的数学知识,平行四边形的判定,两组对边分别相等的四边形是平行四边形。

  第二层次:引导学生探索四边形ABCD的特点。

  学生通过进一步探究可以发现平行四边形ABCD中有一个角是直角,这样就为引入矩形的概念做好铺垫。

  第三层次:概括得出矩形概念。

  在第二层次的基础上概括得出矩形概念,同时,要启发学生注意:矩形的概念有两方面的涵义,它既是矩形的一条性质,又是矩形的一种判定方法。

  活动二探索矩形的性质

  活动分四个层次:

  第一层次:让学生举例说明生活中的矩形,使学生直观初步认识矩形,及矩形在生活中的广泛应用。

  第二层次:让学生通过量课堂课本封面来了解矩形的性质,复习平行四边形的性质,并使学生理解矩形与平行四边形的特殊与一般的辨证关系,矩形具备一般平行四边形的性质,从而让学生叙述矩形具备的一般平行四边形的性质。

  第三层次:引导学生思考,促使学生理解,由于矩形比一般平行四边形多一个特殊条件:有一个角是直角,因此矩形具有一些特殊性质,探索它的特殊性质要从它的特殊处有一个角是直角入手。引导学生观察:改变平行四边形形状,它的边、角、对角线有怎样的变化?当一个角为直角时,它的四个角有什么特点?两条对角线有怎样的特殊关系?这一层次旨在利用四边形的不稳定性,借助直观,引导学生通过合情推理去探索、发现结论。同时在演示的过程中,学生可以体会到知识发生的过程,渗透了量变到质变的辩证唯物主义观点的教育。

  第四层次:在第三层次的基础上,引导学生对矩形的角、对角线的性质进行说理,同时发展学生有条理地表达能力。

  3、例题讲解:

  本例设计的目的直接应用矩形的有关性质;同时为总结矩形中具有的一些特殊图形(四个等腰三角形)做铺垫。也进一步培养学生的数学表达能力和书写能力。

  4、课堂练习:

  例题讲解完毕后,通过问题链来归纳总结矩形的相关特点:由OA=OB=OC=OD可知图中有几个等腰三角形?这些三角形全等吗?面积相等吗?几个直角三角形?研究矩形的轴对称性。有关矩形的问题往往转化为直角三角形或等腰三角形的问题解决。

  5、课堂小结:

  引导学生归纳总结,教师补充升华:

  矩形的性质

  6、知识拓展

  1、培养学生用多种方法解决实际和积极思考的习惯,同时为下一节课创设问题情境,(引入课中问题中另一种解决办法)

  2、通过生活知识引导学生探究数学,应用数学,培养学生的学习数学的兴趣(门框窗框为什么要做成矩形的?)

  7、布置作业:课本P134T1、2、3、4;作业本(2)P33

  六、板书设计:

  矩形的性质

  (一)、定义:

  (二)、矩形的性质

  (三)、例题

  七、反思:

  本节课的容量决定学生板书时间太少。

初中数学说课稿2

各位评委:

  早上好

  今天我说课的题目是《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了第一章有理数,对有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算,难点确定为:负数和有理数法则的理解和运用

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1、知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识。

  2、过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力。

  3、情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

  三、教学方法分析方法:分层次教学,讲授、练习相结合。

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

  3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  学法指导

  “授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

  四、教学过程分析

  根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:

  (1)创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。

  (2)运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦。

  知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

  归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的`控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

  (3)发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4)分析思考,加深理解

  设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。

  (5)强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6)小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、

  (7)当堂检测对比反馈

  (8)布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解!

初中数学说课稿3

  一、教材分析

  本章的主要内容是单项式、多项式、整式的有关概念,合并同类项、去括号法则、整式的加减运算.这些知识是以后学习分式、根式运算以及函数等知识的基础.同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具.

  这节课作为本章起始课显得很重要,核心概念是单项式与多项式,及由此归纳出的整式的的概念.这也是本节课教学重点.通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性.

  二、学情分析

  在小学和前两课时,已经学习了用字母表示数、列代数式表示现实世界中简单的数量关系,学生已经对整式具有了一定的感性认识.但在学习本课重点----单项式的概念、系数和次数,理解多项式的概念和正确确定多项式的次数和项数这些新出现的概念与名词时特别要处理好本课教学难点:

  ①系数是负数、分数、±1或含有π时的情形.

  ②多项式的次数和项的次数混淆.

  三、教学目标设计.

  知识技能目标:

  (1)理解并掌握单项式的概念、系数和次数;

  (2)理解并掌握多项式的概念和正确确定多项式的次数和项数;

  过程方法目标:通过小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  情感态度目标:培养学生的自学能力和乐于探索、勇于创新的科学精神.

  四、课堂结构设计.

  本节课堂教学采用“问题—探究—应用—拓展—提高”课堂结构,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程.

  五、 教学媒体设计.

  ①多媒体辅助教学②小组合作讨论式教学两种方式.

  六、 教学过程设计.

  (1)引入

  多媒体展示一组都是数字与字母的乘积的思考题,学生独立思考完成。完成后请学生汇报,然后确认并板书:引导学生一同分析上述各式子,指出各式的共同点.

  (2)归纳出单项式的概念

  提出“单项式”的.概念,并举例说明系数、次数的概念.这是本课第一个重点内容.

  通过一组练习帮助学生学会识别单项式以及单项式的系数与次数,特别弄清负数做系数,强调系数包括前面的符号.还要弄清只含有字母因数的单项式的系数是1或-1,系数1常省略.

  (3)通过一组思考练习题归纳出“多项式”的概念

  从单项式到多项式的概念提出,是一个从特殊到一般的一个过程,也有一个类比的思想.多项式也是一个重点内容,指出共同点,着重指明多项式是几个单项式的和.

  (4)通过一组练习题识别多项式及多项式的项与次数,帮助学生掌握多项式有关的概念.

  (5)归纳出“ 整式”的概念.

  设计一个小练习,给出若干代数式,让学生把判断哪些是多项式.既加深对单项式、多项式概念的掌握,同时归纳出整式的概念.

  (6)巩固练习

  设计一组综合练习题,巩固单项式、多项式和整式的概念

  (7)拓展提高

  加深对概念的掌握,并能够应用概念解决相关问题

  (8)课堂小结

  引导学生小组间进行民主小结,本课学到哪些知识?

  (9)当堂反馈

  设计一组涵盖本课主要内容的检测题,时间5分钟.检测题要充分体现本课的重点与难点.

初中数学说课稿4

  一、教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

  2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

  3、情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

二、教法与学法分析

  学情分析:

  七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。

  另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:

  结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。

  把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

三、教学过程设计

  (一)创设情境,提出问题

  (1)图片欣赏勾股定理数形图

  1955年希腊发行美丽的勾股树

  20xx年国际数学的一枚纪念邮票

  大会会标

  设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

  (二)实验操作模型构建

  1、等腰直角三角形(数格子)

  2、一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的.难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  (三)回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  (四)知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维。

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  (五)感悟收获布置作业

  这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料。

四、板书设计

  探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。

  2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

初中数学说课稿5

  一、课题名称:

  7.5多项式的乘法。

  二、教学目的:

  ⒈会叙述多项式相乘的法则.

  ⒉知道多项式相乘的法则是两次运用单项式与多项式相乘的法则得到的

  ⒊能按多项式乘法步骤进行较简单的多项式乘法的运算.

  三、重点:多项式的乘法法则及其应用;

  难点:灵活运用多项的乘法法则进行计算.

  四、讲授新课:

  ㈠复习

  ⒈单项式与多项式相乘的法则

  ⑴用文字叙述:

  ⑵用字母表示:

  ⑶数学模型(矩形的面积和):

  ⒉注意:多项式是单项式的代数和,各单项式应包括前面的符号。

  ㈡提出问题

  问题Ⅰ(简单)尝试解决问题。

  计算:

  方法一、原式==15

  方法二、原式===9+6=15

  方法三、原式=

  =3+6+2+4=15

  问题Ⅱ

  =am+an+bm+bn

  尝试的依据:效果相同。

  ㈢、归纳、小结(多项式的乘法法则)

  ⑴用字母表示:

  ⑵用文字叙述:一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的第一项,再把所得的积相加.

  ⑶数学模型(矩形的面积和):

  ⑷对公式的整体上理解:

  ①转化:多项式的.乘法,可看作两次运用单项式与多项式相乘的法到.

  ②积的项数:(在未合并同类项之前其项数)

  是这两个多项式的项数的积。

  ㈣巩固、提高

  例1计算:

  ⑴⑵⑶

  解:

  注意:

  ⒈积中各项的符号(多项式是单项式的和,每一项都包括前面的符号).

  ⒉最后结果应对同类项进行合并.

初中数学说课稿6

  首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

  然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

  由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。

  为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。

  最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。

  以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

  评课记录

  开发区李玉:于坤老师这节课有几个突出特点:

  1、给学生创设了生动的问题情境。本节课用宋朝文学家苏轼的一首著名的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。

  2、注重过程教学和学法指导

  在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的'教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。

  3、体现学生主体地位,注重学法指导

  教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。

初中数学说课稿7

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的.主人.

  三、 教学过程设计

  1创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.

  通过以上实验归纳总结勾股定理.

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.

  三.回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.

  四、知识拓展巩固深化

  基础题,情境题,探索题.

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.

  五、感悟收获布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料.

  板书设计

  探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.

  初中数学说课稿课件:《认识平行四边形

  【说教材】

  一、说课内容:苏教版数学四年级下册第43~45页。

  二、教学内容的地位、作用和意义:

  这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。

  三、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)认识平行四边形的底和高,会画高。

  (3)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

  四、教学重点、难点:

  教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

  教学难点:是学生在做平行四边形的过程中体会其特征。

  五、说教具和学具准备

  教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

  学具:三角板、平行四边形纸片、量角器。

  【说学情】

  四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

  【说教法和学法】

  这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

  一、联系生活实际进行教学

  “数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

  二、让学生在活动中探究

  心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

  三、独立思考与合作交流

  本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。

  【说教学程序】

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的`距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】

初中数学说课稿8

  一、 教材分析

  教材的地位和作用:

  矩形是在同学们已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

  二、教学目标

  根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合同学们实际情况,我把本节课的教学目标确定为:

  知识技能:

  1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

  2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

  数学思考:

  1.经历矩形的概念和性质的探索过程,发展同学们合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展同学们的思维能力和语言表达能力。

  2.根据矩形的性质进行简单的计算和应用,培养同学们逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

  解决问题:

  通过同学们观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

  情感态度:在与他人的交流合作中,让同学们感受数学活动充满探索的乐趣,提高同学们的学习热情和学习的积极性,培养同学们合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展同学们的主动探索和独立思考的习惯。

  三、教学重点:矩形的性质及其应用。

  教学难点:理解矩形的特殊性,探究矩形特殊性质。

  四、教法及手段:

  根据本课内容和同学们的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和同学们的主体地位得到充分体现。

  教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

  五、教学过程

  本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

  在本课各个环节设计中力求突出以下几个方面:

  1、数学问题生活化

  设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2 ; 性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的同学们还不知道电视的大小是指的对角线的长短,通过这道题目,让同学们了解到生活的常识,也让同学们进一步体会数学在生活中的作用,而且通过问题的解决培养同学们爱数学、学数学的热情。

  2、创设自主探究情境,发挥同学们的主动性

  矩形定义的探究,同学们拿出自制平行四边形学具,分组活动,通过同学们观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过同学们找出生活中的实例,让同学们感受数学美及数学与生活的联系。矩形性质的探究是让同学们类比平行四边形的性质,通过观察、测量、分析、证明等手段,()让矩形的性质在活动中"浮出水面".活动中让同学们自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给同学们。我在评价中对活动积极的小组和个人进行表扬,增强同学们创造的信心,体验到成功的快乐。性质1是同学们小组交流完成的证明。而性质2要求同学们认真写出已知、求证和证明过程,在此基础上请一个同学们上黑板板书,其余同学们观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养同学们发散思维能力,养成良好的解题习惯。 活动中让同学们充分经历知识形成的全过程。同时也积累了良好的学习经验。

  3、训练同学们的逻辑思维,培养同学们严谨的解题习惯。

  本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导同学们进一步发现与矩形中所包含的基本图形,从而让同学们感受矩形与等腰三角形与直角三角形有密切的关系,让同学们体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养同学们发散思维能力。例题的设计是让同学们体会性质应用的同时规范同学们的解题步骤和格式,让同学们感受数学思维的.严谨性。练习2是生活中的问题,让同学们体会生活中的数学,做到学用结合,培养同学们学习数学的的热情和情趣。

  4、教学活动中注重体现人人学有价值的数学

  首先根据不同同学们的智力、能力、基础不一,把同学们编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的同学们共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。 其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的同学们选用。另外数学日记是帮助同学们总结本节课的收获和不足,培养同学们善于总结和反思的习惯。

  5、充分利用多媒体辅助教学

  本节课是采用多媒体进行辅助教学的,给同学们以直观感性的认识,培养同学们观察、表述、归纳的能力。 使教学目标得以顺利完成。

  以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学说课稿9

  一、教学目标

  【知识与技能】能利用方程解决实际问题。

  【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

  【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

  二、教学重难点

  重点:建立电话计费问题的方程模型。

  难点:建立电话计费问题的方程模型。

  三、教学过程

  1.导入新课

  前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

  2.对问题的初步认识

  问题1:下面表格给出的是两种移动电话的计费方式:

  你了解表格中这些数字的含义吗?

  师生活动:教师提问,学生思考,回答。

  教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

  问题2:你觉得哪种计费方式更省钱呢?

  师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

  若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;

  若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的'关键点、分类后各区间的变化趋势作进一步的探究。

  讨论后安排学生再次思考,可适当讨论。

  3.对问题的深入探究

  问题3:通过大家的讨论,你对电话计费问题有什么新的认识?

  师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

  若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;

  若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

  问题4:设一个月内用移动电话主叫为t min(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

  师生活动:教师提出问题,学生思考并制作表格,教师巡视。

  教师请学生填写下面的表格,其他同学适当补充。

  观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?

  师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

  一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。

  教师追问:

  (1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?

  (2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

  (3)当主叫时间“大于150min且小于270min”或“大于270min且小于350min”时,分别选择哪种计费方式比较省钱?

  对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

  问题5:综合以上的分析,可以发现:

  当?时,选择方式一省钱;当?时,选择方式二省钱。

  师生活动:教师提出问题,学生思考并回答。

  4.小结

  请学生回顾电话计费问题的探究过程,回答以下问题:

  (1)探究解题的过程大致可以包含哪几个步骤?

  (2)电话计费问题的核心问题是什么?

  (3)在探究过程中用到了哪些方法?你又哪些收获?

  5.巩固应用

  利用我们在“电话计费问题”中学会的方法,探究下面的问题。

  如何根据复印的页数选择复印的地点使总价比较便宜?

  师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。

  6.布置作业

  课本习题1,3。

初中数学说课稿10

  说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小编整理的初中数学《勾股定理的逆定理》说课稿,欢迎大家阅读参考。

  一、教材分析:

  (一)、本节课在教材中的地位作用

  “勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

  (二)、教学目标:

  根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

  知识技能:

  1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

  过程与方法:

  1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

  2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

  3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  情感态度:

  1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

  2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

  (三)、学情分析:

  尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

  重点:勾股定理逆定理的应用

  难点:勾股定理逆定理的证明

  关键:辅助线的添法探索

  二、教学过程:

  本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

  (一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

  (二)、创设问题情境

  一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

  (三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

  因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的.逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

  这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

  接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

  在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

  (四)、组织变式训练

  本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

  (五)、归纳小结,纳入知识体系

  本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

  (六)、作业布置

  由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

  三、说教法、学法与教学手段

  为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

  此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

  总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

初中数学说课稿11

  今天我说课的内容是人教版七年级上册1.2.4绝对值内容。

  首先,我对本节教材进行一些分析:

  一、教材分析(说教材):

  (一)、教材所处的地位和作用:

  本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。

  (二)、教育教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

  1、知识目标:

  1)使学生了解绝对值的表示法,会计算有理数的绝对值。

  2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。

  3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。

  2、能力目标:

  通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

  3、思想目标:

  通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。

  (三):重点,难点以及确定的依据:

  本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

  下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

  二、教学策略(说教法)

  (一)、教学手段:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

  为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节:

  1 、温故知新,激发情趣

  2 、得出定义,揭示内涵

  3 、手脑并用,深入理解

  4 、启发诱导,初步运用

  5 、反馈矫正,注重参与

  6 、归纳小结,强化思想

  7 、布置作业,引导预习

  (二)、教学方法及其理论依据:

  坚持以学生为主体,以教师为主导的原则,即以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

  三、学情分析:(说学法)

  1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。

  3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  最后我来具体谈一谈这一堂课的教学过程:

  四、 教学程序设计

  (一)、温故知新,激发情趣:

  首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  (二)、得出定义,揭示内涵:

  由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolute value)这个定义学生接受起来比较容易。

  给出定义后引导学生讨论:定义里的数a可以表示什么样的数?

  (通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。

  然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?

  (三)、手脑并用,深入理解:

  1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。

  2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的`回答情况给出评价,如很好很规范老师相信你,你一定行等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。

  3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。

  (四)、启发诱导,初步运用:

  有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。

  (五)、反馈矫正,注重参与:

  为巩固本节的教学重点我再次给出三道问题:

  1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?

  2)绝对值是0的数有几个?各是什么?

  3)绝对值小于3的整数一共有多少个?

  先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。

  (六)、归纳小结,强化思想:

  (七)、布置作业,引导预习:

  1、全体学生必做课本习题 1.2 3,4,5 ,10。

  2、选作两道思考题:

  (1)求绝对值不大于2的整数;(2)已知x是整数,且2.57,求x。

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

  以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

初中数学说课稿12

尊敬的各位考官:

  大家好,我是x号考生,今天我说课的题目是《圆》。

  对于本节课,我将以教什么、怎么教、为什么这么教为思路,从教材分析、学情分析、教学重难点等几个方面加以阐述。

  一、说教材

  首先谈一谈我对教材的理解。本节课是人教版初中数学九年级上册第二十四章的第一课,主要内容是圆的定义和一些相关概念。此前学生已经初步认识了圆,也有足够的生活经验,为本节课打下良好基础;本节课的学习为本章深入学习圆的知识做好铺垫。

  二、说学情

  再来谈谈学生的情况。初中生思维比较敏捷,动手能力强,但是理解能力和自主探究能力较缺乏,因此我将采用引导启发以及小组讨论等方式进行教学。并且这一阶段学生自尊心较强,在评价时我会先扬后抑,对学生进行正确引导。

  三、说教学目标

  基于以上分析,我制定了如下三维教学目标:

  (一)知识与技能

  理解圆的定义及圆心、半径、弦、直径、圆弧、半圆、等圆、等弧的概念,能准确识别,且能够正确表示。

  (二)过程与方法

  在经历画圆、探究圆的定义及相关概念的'过程中,提升动手操作能力与分析推理能力,发展空间观念。

  (三)情感、态度与价值观

  体会数学的严谨性,树立实事求是的科学态度。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是圆的定义及圆心、半径、弦、直径、圆弧、半圆、等圆、等弧的概念,教学难点是正确理解概念,准确识别,正确表示。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  考虑到学生对圆已有一定的认知,课堂伊始,我会利用多媒体展示摩天轮、井盖、呼啦圈、自行车车轮、满月等图片。请学生观察图片并描述其中共同的图形。

  这样的方式能够在一定程度上激发学生的学习兴趣,并且减缓畏难情绪。

  此时我会以数学上如何给圆下定义以及还有哪些相关知识为切入点,引出课题。

  (二)讲解新知

  要想定义圆,需要在画圆的过程中抓住本质特征。因此,我会提问学生如何画圆。分享方法之后,组织学生动手作图。基于我对学生当前认知水平的了解,我预设学生有3种方法:①固定短线一端,另一端系着铅笔画一圈;②用圆规;③比照圆形物体。

  在此基础上,我会请学生对比这些方法的优劣,明确前两种方法更灵活。这一活动旨在让学生将注意力放在前两种方法上,为后续教学做铺垫。

初中数学说课稿13

  【教材分析】

  《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上 “质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

  【学生情况分析】

  在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

  【教学目标】

  根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

  知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的`认知、能力水平来确定的。

  过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

  【重点难点】

  教学重点:代数式的概念及用代数式表示常用的数量关系。

  教学难点:用代数式表示实际问题中的数量关系。

  【教法学法】

  根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

  在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。

初中数学说课稿14

  今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

  一、 教学内容

  “平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行” 。

  因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

  在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的.能力。

  二、 教学目标

  基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:

  1、 让学生通过直观认识,掌握平行线的判定方法;

  2、 会根据判定方法进行简单的推理并能写出简单的说理过程;

  3、 运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

  同时确定本节课的重难点:

  重点:在观察实验的基础上进行判定方法的概括与推导.

  难点:方法的归纳、提炼;

  例2教学中的辅助线的添加。

  三、教学方法及手段

  布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.

  教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。

  四、教学过程

  1、 复习旧知,承前启后

  如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;

  在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系?

  此问题旨在复习原来的知识,从而为新知识作好铺垫。

  2、 创设情境、合作探究

  问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。

  问题:如何判断一条纸带的边沿是否平行?

  要求:

  1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);

  2、对工具使用不做限制。

  对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。

  最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。

  ⑴.推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;

  其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。

  ⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;

  而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。

  ⑶折的方法。

  经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:

  内错角相等,两条直线平行。

  同旁内角互补,两直线平行。

  其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。

  3、 初步应用,熟悉新知

  “学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。

  找一找,说一说:

  1.课本练习:如图,直线a,b被直线l所截,

  ⑴若∠1=750,∠2=750 ,则a与b平行吗?根据什么?

  ⑵若∠2=750,∠3=1050 ,则a与b平行吗?根据什么?

  2.根据下列条件,找出图中的平行线,并说明理由:

  图(1)∠1=1210,∠2=1200,∠3=1200;

  图(2)∠1=1200,∠2=600,∠3=620。

  对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。

  例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行?并说明理由。

  确定例题是难点,基于以下两点考虑:

  1、 根据已有的条件与图形,无法解决问题时,要添加辅助线。

  2、 将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。

  因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么?这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件?当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。

  4.练习反馈,巩固新知。

  说一说,写一写:

  1. 如图,∠1=∠2=∠3。填空:

  ⑴ ∵ ∠1=∠2( )

  ∴ ∥ ( )

  ⑵ ∵∠2=∠3( )

  ∴ ∥ ( )

  2.如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。

  练习的安排遵循了由浅入深的原则,让学生在观察后再动手。

  说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。

  因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。

  附加题:

  ⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)?你能帮他们想想办法吗?

  ⑵一个合格的弯行管道,当 ∠C=600,∠B= 时,才能在经历两次拐弯后保持平行(AB∥CD)。请写出理由。

  5.知识整理,归纳小结

  用问题的形式引发学生思索本节课的收获

  提醒学生在这两方面思考:

  ⑴在实验、合作、探究的过程中我们的收获……

  ⑵如果要判定两直线平行时,我们可以联想到……

  6.布置作业 :

  结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。

初中数学说课稿15

  各位专家领导,上午好:今天我说课的课题是《勾股定理》

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  ⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  勾股定理的证明与运用

  用面积法等方法证明勾股定理

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的'认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

【初中数学说课稿】相关文章:

初中数学的说课稿12-02

初中数学《数轴》说课稿11-23

初中数学说课稿06-10

初中数学优秀说课稿06-25

初中数学《数轴》说课稿06-25

经典初中数学说课稿11-09

初中数学面试说课稿11-20

初中数学的说课稿【热门】12-07

初中数学的说课稿【精】12-08

初中数学《勾股定理》说课稿03-04