初中数学说课稿

时间:2024-06-22 14:11:17 初中说课稿 我要投稿

【合集】初中数学说课稿14篇

  作为一名教学工作者,常常需要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那要怎么写好说课稿呢?下面是小编为大家收集的初中数学说课稿,仅供参考,希望能够帮助到大家。

【合集】初中数学说课稿14篇

  初中数学说课稿 篇1

  各位领导、老师:

  您们好,我是来自广东省惠州学院数学与应用数学专业的 .今天我说课的课题是___________________所选用的教材为人教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标分析、教法学法分析和教学过程设计分析四个方面向大家介绍一下我对本节课的理解与设计。

  一。教材分析

  教材分析我通过以下三个方面来加以说明

  1、教材的地位和作用

  本节教材是初中数学 年级 第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  (____是一种重要的数学思想,在实际生活中有广泛的应用,_____的教学,是初中数学教学的重点和难点,在教材中有举足轻重的地位,本节课所学内容,是在学习了_____的基础上,对______进一步拓展;另一方面又为_______的教学打下基础,做好铺垫,在教学中有着呈上启下的作用。)

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,哎发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  备:

  (1 、学生特点分析:

  中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  2、知识障碍上:

  ⑴知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。

  知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

  3、3、动机和兴趣上:

  明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。)

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、教学目标分析(基于以上的学情分析,我确定本节课的教学目标如下:)

  新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1. 知识与技能:(了解、理解、熟记、初步掌握、会运用 对 进行 等);

  2. 过程与方法:(通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识;以及通过师生的双边活动,初步培养学生运用知识的`能力,培养学生加强理论联系实践的能力。)

  3. 情感、态度与价值观:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  备:(坚持"以学生为主体,以教师为主导"的原则,即"以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后"的原则,根据学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。)

  最后我来具体谈一谈这一堂课的教学过程:

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,()是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 .

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  (以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。)

  以上是我对《 》第几课时的构思和设计,不足之处请各位领导、老师批评指正,谢谢!

  初中数学说课稿 篇2

  初中数学湘教版说课稿1

  各位老师,大家好!今天,我说课的内容是:湘教版七年级数学下册第五章第一节“轴对称图形”,下面,我就教材、教法、学法、教学程序和教学评价几个方面加以说明。

  一、说教材

  1、 教材的地位和作用 :“轴对称图形”是第五章“轴对称”的第一节的第一课时,是初中数学教学中的一则重要内容,它与我们的现实生活有着紧密的联系。实际生活中也随处可见轴对称图形及轴对称的应用。

  2、学生情况分析:学生已经学过一些平面图形的特征,形成了一定的空间观念。日常生活中具有轴对称性质的很多事物,为学生奠定了感性基础。

  二、 教学目标

  1,知识与技能:通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别。

  2.过程与方法:通过折纸、剪纸等活动,培养学生探索知识的能力与思考问题的习惯。

  3.情感态度价值观:通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用。

  4、教学重难点 :

  教学重点:认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。

  教学难点:轴对称和轴对称图形的区别和联系。

  三、说教法与学法

  本节课我以“感受生活——动手操作------共同探讨——归纳总结————应用实践”的模式展开教学。让学生始终处于主动的学习状态,让学生有充分的思考机会。

  1、教 法:观察法、讨论法、探究法、多媒体电化教学。 在课的开始,结合多媒体动画,从优美的生活场景中抽象出蝴蝶、蜻蜓、树叶这三个轴对称图形,激发学生的情趣,使学生产生探索的强烈愿望,体会到数学与生活的密切联系。

  2、学法:观察猜想、共同探讨、动手操作、归纳总结、应用实践。“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学习是一种过程,而不是结果.”可见,“学会学习”本身比“学会什么”更重要.

  3、教学准备

  教师准备: 课前制作动态演示的多媒体课件;模具、实物、投影、胶水。

  学生准备:剪刀、各种美术颜色、美工刀一把、白纸若干。

  四、说教学过程

  创设情境,激发兴趣 (用多媒体演示生活中的有关画面)

  故事引入:(师讲故事的过程中播放动画)

  实验探究

  探究一

  问题1:这些美丽的图形来自生活。认真观察这些图形有什么共同特征?用自己的语言来描述.

  问题2:你能将图中的窗花沿某条直线对折,使直线两旁的部分完全重合吗?其他图形呢?(在学生通过观察、概括、小组讨论的基础上,教师适时引导学生进行归纳验证:方法一:动手操作“扎纸”实验。)

  方法二:利用多媒体,用动画的形式演示,总结,得出轴对称图形的概念:轴对称图形、对称轴。

  这样设计目的在于引导学生积极思考,在同伴的帮助下,经过自己的努力主动地获取知识。也有利于培养学生观察能力,概括能力和语言表达能力。

  练习: 请大家拿出你们准备的图形,动手折一折,画一画,找出它们的对称轴,有几条呢?

  探究二

  学生活动.做“印墨迹”实验:取一张质地较软、吸水性能好的纸,在纸的一侧滴一滴墨水,将纸迅速对折、压平,并用手指压出清晰的折痕,再将纸打开后铺平,观察所得到的图案有什么特征?

  完成上面实验后,启发引导学生有什么发现?在于同伴交流的基础上,教师适时引导学生进行归纳总结,得出轴对称的概念:

  接下来给学生例举生活中的轴对称现象,在加深印象的同时,让学生体会到数学来源于生活,生活处处有数学。

  问题3:你能说出轴对称与轴对称图形的区别与联系吗? 先给学生一分钟时间思考,然后与同伴交流自己的.看法,再在全班进行交流。为了让学生更好的体会特征,可利用多媒体,展示具有 代表性的图片。最后教师加以点评,得出二者的区别与联系。

  拓展应用

  1、让学生设计一个优美的轴对称图案。展示自己的作品,体会创作时的快乐和意想不到的图案美和成就感.

  2、欣赏反思,提升认识。师:请看这里!音乐声中,教师配音介绍,学生谈感受。舞姿优美典雅的舞蹈——“千手观音”、雄伟壮丽的人民大会堂、历史悠久的北京天坛、巍峨高耸的法国埃菲尔铁塔、

  课堂小结

  (1)、本节课学到了哪些知识?

  (2)、说说自己在本节课中的体会或困惑? 课后作业

  1:教科书第117页习题5.1的第 1、2、3、题。

  2:教科书第114练习第1、2题

  五、教学实践活动的收获与反思:

  1、在学习中实践 ,我学习了金石中学几位老师的课堂教学,提升了自己教育教学能力。

  2、在实践中反思 ,在实践研修的过程中,我充分感受到课堂不只是教师个人的舞台,还应是师生心灵对话、情感交流的舞台。教师只有在课堂上搭建起师生互动的教学交流平台,加强师生间的情感交流,营造民主、平等、和谐的氛围,才有利于促进学生创造性思维的培养。教师和学生分享彼此的思考、见解和知识,交流彼此的理念、情感和体验,才能更好地实现教学相长。

  3、在反思中收获 ,在今后的教育教学实践中,我会静下心来采他山之玉,纳百家之长,慢慢地走,慢慢地教,走出自己的一路风采。

  初中数学湘教版说课稿2

  大家好!很高兴有这样一个机会与大家一起学习、交流,希望大家多多指教!我说课的课题是“合并同类项”,下面进行简单的说课:

  一、教材与学情分析:

  本节课选自湘教版《数学》七年级上册§2.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

  七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。

  基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:

  教学目标:

  知识目标:

  1、了解同类项、多项式相等的概念。

  2、掌握合并同类项的法则。

  能力目标:

  1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

  2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

  情感目标:

  1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。

  2、实施开放性教学,让学生获得成功的体验。

  3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。

  教学重点: 同类项的概念、合并同类项的法则及应用。

  教学难点: 正确判断同类项;准确合并同类项。

  二、设计思路:

  1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。

  2、 引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。

  3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

  三、 教学方法、手段与教学程序:

  为了达到教学目标,实现我的设计效果,我采用引导、探究法为主的教学法,应用多媒体课件运用CAI辅助教学。设计以下主要教学流程:

  1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲望,同时为本课学习做好准备和铺垫。

  2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。

  3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。

  4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。

  5)课堂小结:通过学生的自我反思,将知识条理化、系统化。

  6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。

  我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!

  初中数学湘教版说课稿3

  今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。

  教材分析

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础.有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

  (二)教学目标

  1、知识与能力目标:

  (1)了解有理数加法的意义。

  (2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

  2、过程与方法目标:

  (1)经历法则探索的过程,培养学生归纳总结知识的能力。

  (2)体验初步的算法思想。(转化)

  (3)在探索过程中感受数形结合和分类讨论的数学思想。

  (4)渗透由特殊到一般的唯物辩证法思想。

  3、情感与态度目标:

  (1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

  (2)培养学生协作意识,体验成功,树立学习自信心。

  (三)教学重点、难点:

  重点:理解和运用有理数的加法法则。

  难点:异号两数相加的法则。

  教法与学法

  我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

  教学程序:

  我采用的教学模式分为“引——探——结——用”四个环节。

  (一)、引出课题(2分钟)

  例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

  如果,红队进4个球,失2个球;蓝队进1个球,失1个球. 则红队的净胜球数为 4+(-2),

  蓝队的净胜球数为 1+(-1)。

  这里用到正数和负数的加法。

  那么,怎样计算4+(-2)呢?

  此环节大约2分钟。

  (二)、探索规律、得出法则。 (15分钟)

  现规定正能量为正,负能量为负。

  (1)若两个好人携带正能量分别为+20、+30,

  则相加的结果是( )。

  写成算式:(+20)+(+30)= ( )

  (2)若两个坏人携带负能量分别为-20、-30,

  则相加的结果是( ) 。

  写成算式:(-20)+(-30)=( )

  这两个算式,运算有什么特点呢?

  同号两数相加,好比作同伙人:正数+正数,正能量增大;

  负数+负数,负能量增大。

  最后概括为①定符号;②把绝对值相加。

  (3)若一个好人携带正能量+30一个坏人携带负能量-10。

  则两人较量的结果是( ) 赢,还剩( )能量。

  写成算式:(+30)+(-10)=( )。

  (4)若一个好人携带正能量+20一个坏人携带负能量-40。

  则两人较量的结果是( )赢,还剩( )能量。

  写成算式:(+20)+(-40)=( )。

  这组算式,运算有什么特点呢?

  异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大, 符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

  最后概括为①定符号;②把绝对值相减。

  再看两种特殊情形:

  (5)若一个好人携带正能量+30,一个坏人携带负能量-30。则两人较量的结果是( ),还剩( )能量。

  写成算式:(-30)+(+30)=( )。

  (6)20+0=( ) 0+(-15)=( )

  新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

  (三)小结(3分钟)

  有理数的加法法则

  1、同号两数相加:

  取加数的符号,并把绝对值相加。

  2、异号两数相加:

  取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  3、互为相反数的两个数相加得0。

  4、一个数同零相加:仍得这个数

  (四)、用

  1、加深理解,巩固法则。(5分钟)

  (1)填表

  (2)思考:在进行有理数加法运算时,应分几步完成?

加数
加数
和的组成
符号
绝对值
-12
3
-
12-3
-9
18
8



-9
16



-9
-5



  此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

  2、变式训练,应用法则。(15分钟)

  例1.计算

  (+20)+(+12) (-8)+(-12)

  (-3.75)+(-0.25) (-1/2)+(-2/3)

  (-7)+0

  例2.计算

  (-5)+9 7+(-10)

  (-3/4)+1/2 3/5+(-3/5)

  数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题.例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

  3、小组闯关,检测目标。 (5分钟)

  在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

  我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

  三点教学反思

  1、情境探究问题的设置

  我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。

  2、例题安排的设置

  我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。

  3、数学语言表达的训练

  为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。

  初中数学说课稿 篇3

  您现在正在阅读青岛版数学《数运算》说课稿文章内容由收集!本站将为您提供更多精品教学资源!青岛版数学《数运算》说课稿尊敬各位专家、评委老师们,大家好!

  我说课内容是义务教育课程标准实验教科书(青岛版)五年级数学下册回顾与整理总复习第117页知识与技能部分(二)数运算。

  数运算这部分内容包括整数、小数、分数四则运算意义和计算法则、运算定律和简便运算以及四则混合运算三部分。《整理和复习》中将小学阶段计算知识和技能进行了系统整理:

  (1)进行比较对照,沟通了整数、小数、分数四则运算意义,看到四则运算间关系。

  (2)通过复习运算定律和简便算法 及其应用,加深对算理理解。

  (3)通过复习四则混合运算,在掌握运算顺序基础上,学会在计算过程中根据运算符号和数特点以及数与数之间联系,合理灵活地选择计算方法,进一步提高学生计算能力。

  对于数与计算,学生在生活中有一定认识和理解,又经过前边单元系统学习,对整数、小数、分数和百分数意义和特点有了比较详细了解,通过本节课复习,增强学生数感,灵活选择适当计算方法进行计算,进一步感受计算在生活中应用,体会数与计算与生活紧密联系,增强数感,提高计算能力。

  说目标:本节课教学目标是:

  1、系统归纳、整理整数、小数、分数和百分数意义、特点和表现形式,并能正确灵活运用运用。

  2、学生对生活中事件和数据,从数学角度、用数学思想加以解释,培养学生观察、思考、分析数学意识,经过分析、思考、讨论、争论,得出数学结论。灵活选择计算方法,把枯燥计算与生活实际结合起来,学生对所学知识系统化、深化。

  3、体会合作交流实际意义,在合作交流中学习。

  本节课教学重点是:学生综合运用所学知识对生活中事件和数据,从数学角度、用数学思想加以分析解决。教学难点是:能灵活地运用运算定律和性质进行计算。

  教学方法:本节课主要采用以下教学方法:

  ①预习与回忆法让学生对将要复习内容先进行回忆,调动自己头脑里相关记忆,并对将要复习内容先进行自我学习.

  ②自主梳理,整理归纳法梳理要完成两项任务,一是将相同知识点联系起来,二是把不同知识点分开来,使知识条理化,系统化.整理归纳法是教师在研究教材和学生基础上,让学生把学过知识按一定方式予以分类,整理,以求系统连贯,便于学生复习与提高.

  ③比较法比较是重要也是常用思维方法.在数学复习课中利用比较法复习,可以帮助学生分清知识联系与区别,便于对知识理解和记忆.

  ④讨论法便于有针对性地解决一些复习中疑难问题,提高复习效果.同时也便于教师及时掌握复习过程反馈信息,以便更有效地进行下一步复习.

  您现在正在阅读青岛版数学《数运算》说课稿文章内容由收集!本站将为您提供更多精品教学资源!青岛版数学《数运算》说课稿三、说学法:

  本课属于复习课,内容和形式十分特殊。虽然这一阶段学生思维能力仍以具体形象思维为主,但其抽象逻辑思维能力已获得了一定发展。他们已初步具备了主动学习,自学思考能力。对于老师提出学习任务,他们有主动回忆,主动复习内驱力,他们能根据具体要求有序地展开思考、讨论、从而获得丰富知识再现。可以说,他们有能力去将尚不清晰相关知识加以整理,内化整合,形成体系。因此本课让学生运用自主、合作、探究学习方式,通过交流回顾,调整起点 合作交流自主梳理,引导建构比较分析,强化认识综合练习,整体提升独立练习当堂反馈,小结反思.等学习活动,经历自己建构知识过程,达到掌握知识、培养能力、在活动中获得成功体验这个目标,从而培养学生学习数学兴趣,真正实现人人学有价值数学这个目。

  教学过程:

  一、预习回忆,先行复习.

  课前我先安排学生根据教材预习并注意做好预习笔记,这既是让学生先回忆,调动自己头脑里相关记忆,对将要复习内容先进行自我学习,也为教师组织课堂复习提供基础.

  二、交流回顾,调整起点.

  在上课第一个环节我先安排同桌交流预习情况,在此基础上再组织全班进行交流,既是对学生预习情况检查,反馈,也是希望通过两个层次交流让学生在具体情境中再次体验加,减,乘,除四则运算意义,调整全体学生学习指向与起点,为系统建构运算意义做准备.

  三、自主梳理,引导建构.

  在学生体验回顾了四则运算意义基础上,我通过一组题独立思考与交流,意图在于引领学生能在具体问题中寻找所学过运算原型,比较系统地构建四则运算现实意义.

  四、比较分析,强化认识.

  此环节主要是通过小组,全班交流学过运算定律有哪些,应如何应用。

  五、拓展深化,提高认识.

  本环节主要依据学生实际学习情况,引导学生研究四则运算各部分间关系,拓展深化学生对四则运算认识.主要分两步:首先解决应用与反思第四题,体会四则运算中合理选择计算方法。其次,出示118页,红点问题,让学生体会采用合理计算方法解决实际问题。

  六、总结内化,形成系统.

  本环节在引领学生全面回顾,体会四则运算意义与关系,各部分间关系基础上,通过我们本节课复习了哪些知识 这个问题,让每一个学生再一次经历全面,系统地总结四则运算意义与关系,形成相应知识体系.

  我说课结束了,有不当之处,敬请各位专家老师批评指正,谢谢!

  初中数学说课稿 篇4

  尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《一元二次方程》。

  针对本次的说课,我将以教什么、怎么教、为什么这样教为思路,从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。《一元二次方程》选自华东师大版初中数学九年级上册第22章第1节,本节课的内容主要是一元二次方程的概念。在此之前学生已了解了一元一次方程,为本节课的学习做好铺垫。同时本节课的学习有利于学生很好地找出一元二次方程的二次项系数、一次项系数、常数项,是后续学习解一元二次方程的基础。

  二、说学情

  了解学情,掌握学生的基本情况,才能进行有针对性的教学。这一阶段的学生掌握了一定的基础知识,思维较敏捷,动手能力较强,但理解能力、自主学习能力都比较匮乏。基于此,本节课注重引导学生动脑思考,更富有启发性。且该阶段学生自尊心较强,所以对学生的评价应注重先扬后抑,鼓励多多发言,还能够对学生进行正确的引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解一元二次方程及其相关概念,能准确识别一元二次方程,能正确指出一元二次方程的二次项系数、一次项系数、常数项。

  (二)过程与方法

  经历观察、类比、总结的过程,提升分析能力与归纳概括能力。

  (三)情感、态度与价值观

  养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。

  四、说教学重难点

  本着新课程标准的要求,在吃透教材的基础上,我确定了以下的教学重难点。本节课的教学重点是一元二次方程及其相关概念。教学难点是一元二次方程概念的归纳过程。

  五、说教法和学法

  为了实现教学目标,突出重点、突破难点,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、说教学过程

  下面将重点谈谈我对教学过程的`设计。

  (一)导入新课

  本节课我采用复习导入。首先回顾已学过方程的类型有整式方程中的一元一次方程、二元一次方程和分式方程。然后请学生简单解释“元”与“次”的含义,然后从命名上思考还可能有哪些方程。在此基础上提出本节课学习一类新的方程,引出课题。

  这样能够唤起学生对此类方程命名规则的记忆,为后面观察具体方程得出特征总结概念做好知识铺垫。

  (二)讲解新知

  接下来是探索新知环节。

  首先,我用课件展示长方形绿地的信息:长方形绿地面积为900平方米,长比宽多10米。然后提问绿地的长和宽分别为多少?

  初中数学说课稿 篇5

  写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的方法。

  五、说教法、学法

  本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

  同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

  六、说教学过程

  (一)导入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

  (二)探索新知

  问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

  学生小组讨论,探究后,展示三种做法。

  问题:小颖用的`什么法?——公式法

  小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

  小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

  问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

  师引导学生得出结论:

  如果a·b=0,那么a=0或b=0

  (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

  “或”有下列三层含义

  ①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

  问题3:

  (1)什么样的一元二次方程可以用因式分解法来解?

  (2)用因式分解法解一元二次方程,其关键是什么?

  (3)用因式分解法解一元二次方程的理论依据是什么?

  (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

  因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

  这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

  (三)巩固提高

  在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

  用分解因式法解下列方程吗?

width="399" height="71" alt="初中数学说课稿万能" src="http://uploads.gzpinda.com/image/201801/26/15169489595a6acddf340e7583728.png"/>

  在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

  (四)小结作业

  最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

  七、说板书设计

  我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

  初中数学说课稿 篇6

  一、教材分析:

  反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、教学目标分析

  根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的.解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

  三、教学重点难点分析

  本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

  难点则是如何抓住特征准确画出反比例函数的图象。

  为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、教学方法

  鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

  和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨

  初中数学说课稿 篇7

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、 解方程在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。

  2、一元一次方程这一章可以归纳为两个方面:第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  3、接下来,介绍本节课的教学目标、重点和难点。

  教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:(1)熟悉利用等式性质解一元一次方程的基本过程;(2)通过具体的例子,归纳移项法则;(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。2、能力目标是:(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。;3、情感目标是:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。(2)培养学生严谨的思维品质。由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。

  二、教材处理

  本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。然后交流各自所发现的`规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、 引入:①通过游戏引入:同学们,你们是不是经常完游戏?今天我们来玩一个数学游戏,我手中有6、X、30三张卡片,请同学们用他们编一元一次方程,比一比看谁编的又快又对。学生思考,根据自己对一元一次方程的理解程度自由编题。②设疑:现在老师遇到一道难题,请同学们帮助解决一下,请看大屏幕:解方程5X-2=8解:5X=8+2 X=2 看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  2、探索规律,总结移项法则:出示引例并鼓励学生通过观察归纳,独立发现移项法则。对有困难的同学,教师通过适当的语言提示,引导学生发现规律。这样学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出移项法则。

  3、例题:对于例1,首先鼓励学生试着解方程,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后规范书写格式。例2,教师首先放手让学生去做。只要学生的解法合理就鼓励。

  4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  5、 归纳总结:教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

  初中数学说课稿 篇8

尊敬的各位老师们:

  你们好!

  今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

  一.背景分析

  1. 教材的地位及作用

  “数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

  2. 教学重点、难点的分析

  教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

  教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

  3. 教材的处理

  1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

  2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

  3)通过练习,使学生准确地掌握数轴的`概念,并会用数轴表示有理数,进一步体会数形结合。

  4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

  二、教学目标设计

  1. 知识技能

  1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

  2.数学思考

  1)通过观察与思考,建立数轴的概念。

  2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

  3.解决问题

  会利用数轴解决有关问题。

  4.情感态度

  通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三.课堂结构和教学媒体设计

  1.教学方法

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境—问题 —观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

  有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

  2.学法指导

  现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。

  要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

  学生的工具:直尺或三角板

  四.教学过程设计

  活动1创设情境引入新课

  1)观察温度计,并填空:

  ℃ ℃ ℃

  师生行为:老师演示课件,学生观察并举手发言。

  设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

  2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

  设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

  3)再次观察课本图1.2-1、温度计,找出它们之间的共同之处

  师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

  设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

  活动2学习数轴的概念

  一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。

  数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。

  师生行为:老师讲解数轴的概念,说明画数轴说要满足的条件,并提醒学生数轴的三要素;学生观察、理解。

  设计意图:初步认识数轴的概念及其所需要的条件。

  活动3数轴概念的应用

  1)讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么?

  ① 师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴

  的三要素。

  设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。

  2)画数轴

  画数轴的步骤:1.画直线;2.在直线上取一点作为原点;3.确定正方向,并用箭头表示4.根据需要选取适当单位长度。

  师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

  设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

  3)在数轴上表示右边各数:0.5 +2 -0.3

  4)指出数轴上A,B,C,D各点分别表示什么数。

  解:点A表示-2;点B表示2;点C表示0;点D表示-1。

  师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。

  设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

  活动4数轴概念的深化

  填空:数轴上表示-2的点在原点的 边,距原点的距离是 , 表示3的点在原点的 边,距原点的距离是 。

  归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点的 右 边,与原点的距离是 a 个单位长度;表示数-a的点在原点的 左 边,与原点的距离是 a 个单位长度。

  师生行为:通过填空,老师引导学生做出课本第12页的归纳。

  设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

  活动5巩固数轴的概念

  课堂练习:

  1)课本第12页的练习1、2题

  2)强化练习(1)在数轴上标出到原点的距离小于3的整数。(2)在数轴上标出-5和+5之间的所有的整数。

  师生行为:学生练习,老师巡堂、指导。

  设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

  作业:课本第17页习题1.2第2题;学生用书同步训练。

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  五、教学评价设计

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  总之,在这节课上,我始终以学生为主体创设情景,激发学生的学习兴趣;、让学生主体参与,探索新知识,充分体现了以学生为主体的新理念;联系实际,数学源于生活,服务于生活,让学生轻松快乐的学习数学,才是新课程改革的最终价值取向。我相信,有了快乐,数学课堂将焕发出生命的光彩。

  谢谢大家!

  初中数学说课稿 篇9

各位评委:

  大家上午好!

  今天我说课的内容是《勾股定理》。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标、教学重难点、教法学法、教学过程等五个方面加以说明。

  一、教材分析

  本节内容是苏科版数学八年级上册第二章第1节《勾股定理》第1课时。它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。由此可见,《勾股定理》是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

  二、教学目标

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

  1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理

  2、经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

  3、通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

  三、教学重点、难点:

  依据教学目标,我认为本节课的重点是:勾股定理的探讨。

  教学难点:利用数形结合的方法验证勾股定理。

  四、教法和学法

  本节课我将采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

  五、教学过程:

  根据以上分析,下面我具体谈一谈本节课的教学过程.

  (一)创设情境以趣引新

  一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的学习积极性)

  (二)实践探索猜想归纳

  1、(课件出示课本P44图2—1),请同学们观察并回答问题:

  根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积。学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的'数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。

  (这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。)

  2、提出问题:是否所有的直角三角形都有这个性质呢

  先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证。仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想。教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。

  (这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到

  初中数学说课稿 篇10

  老师们:您们好!

  非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。

  我说课的内容是华师大版九年义务教育七年级教科书代数第一册第二章第二节"数轴"的第一课时内容。

  一:教材分析:

  本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二:教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

  1. 使学生理解数轴的三要素,会画数轴。

  2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

  3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三:教学重难点确定:

  正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

  四:学情分析:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五:教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生"多观察、动脑想、大胆猜、勤钻研"的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

  为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

  (一)、温故知新,激发情趣

  (二)、得出定义,揭示内涵

  (三)、手脑并用,深入理解

  (四)、启发诱导,初步运用

  (五)、反馈矫正,注重参与

  (六)、归纳小结,强化思想

  (七)、布置作业,引导预习

  六:教学程序设计:

  (一)、温故知新,激发情趣:

  首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

  (1)零上5°C用 5 表示。

  (2)零下15°C 用 -15 表示。

  (3)0°C 用 0 表示。

  然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  (二)、得出定义,揭示内涵:

  教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

  (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

  画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴?"(通过教师的亲切的语言启发学生,以培养师生间的默契)

  通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

  至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程。

  (三)、手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

  A、

  B、

  C、

  D、

  E、

  F、

  A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

  学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的'三要素,画数轴时这三要素缺一不可。

  我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)、启发诱导,初步运用:

  有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

  安排课本23页的例1,

  利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上 2、要把数标在点的上方

  通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

  当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

  (五)、反馈矫正,注重参与:

  为巩固本节的教学重点让学生独立完成:

  1、课本23页练习1、2

  2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

  3、数轴上的点P与表示有理数3的点A距离是2,

  (1)试确定点P表示的有理数;

  (2)将A向右移动2个单位到B点,点B表示的有理数是多少?

  (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?

  先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  (六)、归纳小结,强化思想:

  根据学生的特点,师生共同小结:

  1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

  让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

  (七)、布置作业,引导预习:

  为面向全体学生,安排如下:

  1、全体学生必做课本25页1、2、3

  2、最后布置一个思考题:

  与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?

  (来引导学生养成预习的学习习惯)

  七:板书设计:(略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

  以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

  初中数学说课稿 篇11

  一、教材分析

  1、教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  2、学情分析

  (1)说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  (2)说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  (3)说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  3、教材重难点

  重点:幂的`乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  1、知识与技能目标

  (1)通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

  (2)掌握幂乘方法则。

  (3)会运用法则进行有关计算。

  2、过程与方法目标

  (1)培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  3、情感、态度与价值观

  体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  四、教材处理

  1、通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  2、为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  3、获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  4、课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  初中数学说课稿 篇12

  我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

  一、教材分析

  多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

  二、学情分析

  1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

  2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

  三、教学目标分析

  新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

  【知识与技能】

  掌握多边形的内角和公式,并能熟练运用。

  【数学思考】

  (1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

  (2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  【解决问题】

  通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

  【情感态度】

  1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

  2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

  基于以上教学目标,我确定以下教学重难点:

  【教学重点】探索多边形的内角和公式。

  【教学难点】探究多边形内角和时,如何把多边形转化成三角形。

  因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

  四、教法和学法分析

  本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

  1、教学方法:

  根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

  2、学习方法:

  利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

  五、说教学流程

  1、环节一:创设情景、引入新课

  情景:请学生观察“上海世博园”的宣传视频。

  从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

  2、环节二:合作交流、探索新知。

  活动1:

  猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

  议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量” 、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的'语言表达能力与推理能力。

  针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

  想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

  活动2:

  做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。

  上节课我们学习了多边形的对角线,我们来看对角线与多边形的边数和多边形的内角和之间有什么关系?

  议一议:

  问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

  问题2:能否采用不同的分割方法来解决这些问题?

  问题3:n边形的内角和是多少?

  活动3:

  想一想:采取表格的形式,首先请学生找出将多边形分割成三角形的个数,再根据三角形个数求出多边形的内角和。学生分组讨论、归纳分析并展示自己发现的规律,要求用已“探究”的不同多边形来有条理地发现和概括出多边形的边数与内角和之间的关系,水到渠成地归纳、类比推出n边形的内角和公式,让学生体会从特殊到一般的思考问题的方法根据本组探究过程填写下面表格的第二、三、四列,你能从中发现什么规律?

  尝试完成第五列n边形的探究。

  由于学生不熟悉完全归纳法,采取表格的形式使归纳更富条理性。为了让学生更好的理解多边形内角和公式(n-2)×180°,我又鲜明的指出:N表示什么?

  但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

  练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

  抢答:

  (1)过一个多边形一个顶点有10条对角线,则这是边形。

  (2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形。

  (3)多边形的内角和随着边数的增加而,边数增加一条时它的内角和增加度。

  (4)十二边形的内角和等于度。

  (5)一个多边形的内角和等于720度,那么这个多边形是边形。

  3、环节三:例题讲解,知识巩固

  在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

  4、环节四:分组竞赛、情感升华

  (1)智慧大比拼

  内容:P87的练习分成2类。

  通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

  (2)拓展探究

  内容:用一把剪刀,将一张正方形卡片一个角截去,剩下的卡片是一个几边形?它的内角和是多少?

  小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

  (3)情系世博

  内容:20xx年5月1日世博会在上海拉开帷幕,小明为了纪念这一特殊年号,他想用20xx°设计一个多边形,他的愿望能实现吗?

  引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

  5、环节五:畅所欲言、分享成果

  请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

  6、环节六:布置作业、课后提升

  (1)习题7.3第2题、第4题。

  (2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

  采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

  六、评价分析

  评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

  1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

  2、评价学习过程中的创新表现。

  3、评价在学习过程中对身边事物、社会现实的关注程度。

  评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

  七、说板书设计

  最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

  板书设计:

  多边形的内角和

  以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教。我的说课到此结束,谢谢大家。

  初中数学说课稿 篇13

  今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:

  1、向量的直角坐标运算

  2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。

  下面我从三个方面阐述这节课。

  第一方面:教材分析

  本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。

  (一)教材的地位和作用

  向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。

  同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。

  (二)教材的处理

  结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。

  根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。

  由此,我对教材的引入、例题和练习做了适当的补充和修改。

  (三)教学重点和难点

  根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。

  由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。

  要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。

  (四)教学目标的分析

  根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。

  1、知识教学目标

  能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。

  2、能力训练目标

  培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。

  3、德育渗透目标

  通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。

  第二方面:教法与学法分析

  现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。

  在教学中借助于计算机课件辅助教学。

  第三方面:教学过程

  共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。

  (一)复习提问

  (1)向量在直角坐标系中坐标的定义是什么?

  (2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?

  (3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?

  课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的`知识积累。

  (二)导入新课

  在教学过程中,我提出两个问题:

  问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)

  1、则a,b的坐标为……。

  2、求a+b,a—b,λa。

  3、求a+b,a—b,λa的坐标。

  问题2已知A=(x1,y1),B=(x2,y2)。

  1、则,的坐标分别为……。

  2、化简。

  3、求的坐标。

  这两个问题由师生共同练习完成。

  通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。

  (三)创设问题

  这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。

  第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。

  由问题1我们得到结论1:

  a+b=(a1+b1,a2+b2),

  a—b=(a1—b1,a2—b2),

  λa=(λa1,λa2)。

  用语言叙述为:

  两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。

  数乘向量的坐标等于数乘向量相应坐标的积。

  由问题2我们得到结论2:

  =(x2—x1,y2—y1)。

  用语言叙述为:

  一个向量的坐标等于向量终点的坐标减去始点的相应坐标。

  这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。

  练习1(口答)下列说法是否正确:

  (1)已知向量a=(—2,4),b=(5,2),

  则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。

  (2)已知A(2,1),B(3,8),则=(—1,—7)。

  ①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。

  ②提醒学生区分点的坐标和向量坐标,两者是不同的概念。

  上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。

  第二层次:设计练习2、3、4。

  练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。

  (1)a=(—2,4),b=(5,2);

  (2)a=(4,3),b=(—3,8)。

  练习3 已知A(2,1),B(3,8),求。

  练习4 已知(2,3),B(4,5),c(6,8)。

  (1)若3=,求D点的坐标。

  (2)求2—3+2。

  这组练习由学生独立完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。

  第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。

  例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。

  例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。

  讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。

  通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。

  练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。

  练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。

  通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。

  (四)小结

  为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:

  向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。

  (五)布置作业

  为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:

  1、课本第186页:练习A1(1)、2(1);练习B 1、2。

  2、思考题:3a与a的坐标有什么关系?位置有什么特点?

  A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。

  (六)板书设计

  在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:

  课题:6、2、2 向量的直角坐标运算

  问题1练习1 例1 练习5

  结论1练习2

  问题2练习3

  结论2练习4

  本节的说课内容到此结束,谢谢大家。

  初中数学说课稿 篇14

  一、说教材:

  1.本节课的主要内容:

  探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差跟标准差。

  2.地位作用:

  纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的跟落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。

  3.教学目标:

  依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差跟方差,并会用它们表示数据的离散程度”要求,确定以下目标:

  (1)知识目标:

  a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。

  b、会动手跟利用计算器计算“方差”“标准差”。

  (2)过程与方法目标:

  a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。

  b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)

  c.突出关键环节,判断两组数据稳定性是抓住计算其方差进行比较。

  d.在具体实例中体会样本估计总体的思想。

  (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

  4.重点与难点:重点:

  理解刻画数据离散程度的三个量度——极差、标准差跟方差,会计算方差的数值,并在具体问题情境中加以应用。

  难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

  二、说教法

  教学过程是教师跟学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则跟本节教学目标,我采用如下的教学方法:

  1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性跟积极性。

  2.比较法。在极差跟方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

  3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题跟解决问题的能力得到进一步的提高。

  4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入跟比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差跟方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

  三、说学法:

  教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间跟空间,我主要设计的学法指导是:

  (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题跟解决问题。

  (2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。

  (3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解跟应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的'内容跟知识。

  (4)引导自学法:学生自学掌握计数器计算方差跟标准差的操作功能。

  四、说教学程序:

  1.创设情境,导入新课:

  ;1>、展示情景(链接奥运会中韩运动员设计的情景)。

  ;3>、分析思考寻求解决方案(观察表格数据求平均数)。

  2、新课:

  (由学生已经掌握的知识来引出课题,吸引学生的注意力跟提高学习本节知识的兴趣)

  ;1>、概念介绍:

  ;3>、引进概念

  ;5>、计算引例中的方差跟标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

  ;2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

  4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

  5、布置作业:P—199(1)(2)(3-选作题):

  五.说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解跟掌握,同时便于比较跟记忆,有利于提高教学效果。

【初中数学说课稿】相关文章:

初中数学的说课稿12-02

初中数学说课稿03-11

初中数学《数轴》说课稿11-23

数学说课稿初中06-07

初中数学面试说课稿11-20

初中数学的说课稿【热门】12-07

初中数学优秀说课稿05-20

初中数学《菱形》说课稿04-05

初中数学的说课稿【精】12-08

经典初中数学说课稿11-09